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PREFACE

The effort required for these improvements to the NASA/MSFC Global Reference

Atmospheric Model (GRAM) was sponsored by the NASA Marshall Space Flight Center through

the Environmental Data and Hydrological Processes Branch, Earth System Sciences Division, Space

Sciences Laboratory, and the Electromagnetics and Environments Branch, Systems Definition
Division of the Systems Analysis and Integration Laboratory. The effort for the new variable-scale

perturbation model was funded by NASA Johnson Space Center, Navigation, Control and

Aeronautics Division, through the project "Density Shear Model Required for Entry RCS Redline

Update---CR $86706," Mark Hammerschmidt, technical monitor (task was approved by the NASA

JSC Space Shuttle Systems Integration Program Review Change Board, March 3, 1994).

Qualified requesters may purchase copies of the GRAM-95 computer program and
"atmosdat" data base by contacting:

COSMIC

The University of Georgia
382 East Broad Street

Athens, GA 30602

Phone: (404) 542-3265

Purchase information for the Global Upper Air Climatic Atlas (GUACA) CD-ROM data sets is

provided in appendix A.
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TECHNICAL MEMORANDUM

THE NASA/MSFC GLOBAL REFERENCE ATMOSPHERIC MODEL--1995 VERSION

(GRAM-95)

1. INTRODUCTION

1.1 Background and Overview

Reference atmospheric models have long been needed for design and mission planning of

various aerospace systems. Standard atmospheres (such as the 1976 U.S. Standard Atmosphere)

typically provide complete altitude-dependent values for the thermodynamic variables (pressure,

density, temperature, etc.), but typically do not include such other parameters as winds. Standard

atmospheres typically do not provide geographical dependence or seasonal or monthly variability of

the atmospheric variables. Empirically derived reference atmospheres (such as the NASA Range

Reference Atmospheres (RRA)) provide limited altitude coverage (e.g., 0 to 70 km) and are valid

only for the selected sites for which they have been prepared.

The NASA/MSFC Global Reference Atmospheric Model (GRAM) was developed in

response to the need for a design reference atmosphere that provides complete global geographical

variability, and complete altitude coverage (surface to orbital altitudes) as well as complete sea-
sonal and monthly variability of the thermodynamic variables and wind components. Another unique

feature of GRAM is that, in addition to providing the geographical, height, and monthly variation of

the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in

these atmospheric parameters (e.g., fluctuations due to turbulence and other atmospheric perturba-

tion phenomena).

The original GRAM version (Justus et al., 1974) has undergone a series of improvements

over the years (Justus et al., 1980, 1988, 1991). This report describes further additions and
improvements to GRAM, whereby extensive new CD-ROM data sets for the surface to about 27 km

(Ruth et al., 1993) have been incorporated, and in which a new variable-scale atmospheric perturba-

tion model has been included. This new perturbation model has many of the features (e.g., intermit-

tency) of the turbulence model of Justus et al. (1990), but in a simplified implementation, accom-

plished by allowing the perturbation scales to undergo continuous, stochastic variation. This new
version is called GRAM-95. GRAM-95 also incorporates new atmospheric variables in the form of

water vapor and concentration values for other minor atmospheric constituents (ozone and 10 other

trace species).

This section provides an overview of the basic features of GRAM-95, and section 2 provides

a more detailed technical description of GRAM-95, concentrating on the newly added features. Sec-

tion 3 presents some sample results, particularly from the new lower altitude section, from the new

perturbation model, and from the new atmospheric species results. Section 4 is a user's guide that

describes the program characteristics, the data sets required and the details of how to run the pro-

gram. Sections 5 and 6 provide a general bibliography of references and the references for the exten-

sive set of papers and reports from which the parameters of the new perturbation model were
derived.



1.2 Basic Description of the GRAM-95 Model

Like its predecessor versions, GRAM-95 is an amalgamation of three empirically based

models that represent different altitude ranges (and the geographical and temporal variations that

occur within these altitude ranges). The mean thermodynamic variables and mean wind components
of the upper and middle altitude regions are the same as in GRAM-90, while the new Global Upper
Air Climatic Atlas (GUACA) CD-ROM data set of Ruth et al. (1993) provides a revised lower

altitude region (fig. 1.1).

The GUACA data base covers the altitude region from 0 to 27 km (in the form of data at the

surface and at constant pressure levels from 1,000 to 10 mbar). The middle atmospheric region (20 to

120 km) is provided by a data set compiled from Middle Atmosphere Program (MAP) data (Labitzke
et al., 1985) and from other sources whose references are given in the GRAM-90 report (Justus et

al., 1991). The highest altitude region (above 90 kin) is simulated by the Jacchia (1970) model as

implemented in a version called the Marshall Engineering Thermosphere (MET) model (Hickey,

1988a, b). Smooth transition between the altitude regions is provided by fairing techniques. Unlike

interpolation (which is used to "fill in" values across a gap in data), fairing is a process that

provides a smooth transition from one set of data to another, in regions over which they overlap

(e.g., 20 to 27 km for the GUACA and MAP data and 90 to 120 km for the MAP data and the MET

model, fig. 1.1).
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Figure 1.1. Schematic summary of the atmospheric regions in the GRAM-95 program, and the
sources for the models and data on which the mean monthly GRAM-95 values are based.

1.3 The New Global Upper Air Climatic Atlas (GUACA) Data

Th_ GUACA data set (available on CD-ROM; Ruth et al., 1993) was produced by the U.S.

Navy Naval Oceanography Command Detachment and the National Oceanic and Atmospheric
Administration (NOAA) National Climatic Data Center (appendix A). It was summarized from



twice daily (00Z and 12Z) upper air data observations, as processed in the model initialization steps

by the European Centre for Medium Range Weather Forecasts (ECMWF). The data are primarily
from radiosonde balloon soundings (observations at the fixed, mandatory pressure levels) and have

been quality-controlled and interpolated onto a regular 2.5 ° grid by ECMWF during their model

initialization process. Thus, the GUACA data are not the results of the ECMWF forecasts, but are

the observed data used to provide the initial conditions for their forecast model runs.

Atmospheric data elements in the GUACA data base are temperature, density, sea-level

pressure, geopotential height, eastward and northward wind components, and dewpoint temperature.

See section 4.2 and appendix A for further details about the GUACA data base.

Since the GUACA data base includes observed wind component data, winds in this lower

altitude region of GRAM-95 no longer have to be estimated from the horizontal pressure gradients

(by the geostrophic wind relations), as was the case for GRAM-90.

For the GUACA data base, the twice-daily data observations have been averaged into

monthly means (and standard deviations of the observations about the monthly mean) for each of the

months of years from 1980 to 1991, as well as for each month in a period-of-record data set repre-

senting the averages (and standard deviations) over the 1980 to 1991 period.

1.4 New Atmospheric Species Concentration Data

In addition to the traditional variables of pressure, density, temperature, and wind compo-

nents, GRAM-95 now provides estimates of atmospheric species concentrations for water vapor

(H20), ozone (O3), nitrous oxide (N20), carbon monoxide (CO), methane (CH4), carbon dioxide

(CO2), nitrogen (N2), molecular oxygen (O2), atomic oxygen (O), argon (A), helium (He), and

hydrogen (H). The MET (Jacchia) model provides the species concentrations for N2, 02, O, A, He,

and H above 90 km. Air Force Geophysics Laboratory (AFGL) atmospheric constituent profiles

(Anderson et al., 1986) are also used extensively for the constituents up to 120-km altitude.

The GUACA data set provides water vapor data from the surface to the 300-mbar pressure

level. The NASA Langley Research Center (LaRC) water vapor climatology (McCormick and Chiou,

1994) includes H20 values from 6.5- to 40.5-km altitude. MAP data (Keating, 1989) include H20

data from 100 mbar to the 0.01-mbar pressure level. Monthly mean water vapor concentrations in

GRAM-95 are based on the height (or pressure level) ranges shown in figure 1.2, with fairing used
to insure smooth transition between data sources. Note that a mixture of height (km) and pressure

(mbar) units are used in figure 1.2, depending on the tabulation intervals in the original data bases.

For standard deviations in water vapor, GUACA data are used from the surface to 300 mbar; an

extrapolation of GUACA values, based on relative humidity, is used from 300 to 100 mbar; MAP
data are used from 100 to 0.01 mbar; and values based on a a/mean ratio of 0.36 (Harfies, 1976) are

used from 0.01 mbar to 120 km.

For mean ozone values, AFGL data are used from the surface to 20 mbar and from 0.003
mbar to 120 km. MAP values are used between 15 and 0.004 mbar, and MAP-AFGL fairing is used

between 15 and 20 mbar and between 0.003 and 0.004 mbar.

For N20 and CH4 mean values, AFGL data are used from the surface to 20 mbar and from 0.1

mbar to 120 km. MAP values are used between 15 and 0.125 mbar, and MAP-AFGL fairing is used

between 15 and 20 mbar and between 0.1 and 0.125 mbar.



Height (km) or
PressureLevel
(mb0.r) Range GRAM-95 DOLt_ Source for H_Q Mean Values

surface to 300 mbar GUACA CD ROM Data Base (Ruth et al., 1993)

300 to 100 mbar Fairing between GUACA and LaRC data

100 mbar to 39.5 km LaRC data (McCormick and Chiou, 1994)

39.5 to 40.5 km Fairing between LaRC and MAP data

40.5 km to 0.02 mbar

0.02 to 0.01 mbar

MAP Data (Keating, 1989)

Fairing between MAP and AiZGL data

0.01 mbar to 120 km AFGL Data (Anderson et al., 1986)

Above 120 km No data available (output = 0.0)

Figure 1.2. Summary of the atmospheric regions and data sources used for monthly mean
water vapor concentration in GRAM-95.

For O concentrations, MAP values are used from 40 to 90 km. MET model values are used

above 100 km, and MAP-MET fairing is used between 90 and 100 km. O is output as 0.0 below 40
km.

For N2, 02, A, and He values, the AFGL data are used from 0 to 90 km; the MET values are

used above 120 km; and MET-AFGL fairing is used from 90 to 120 km. The AFGL data values are

used for CO and CO2 from the surface to 120 km and are output as 0.0 above that altitude. H values

are output as 0.0 below 90 km and come from the MET model above this height.

With the exception of water vapor, for which both mean and standard deviation values are

provided, only mean values are given for the atmospheric species constituents.

1.5 The New Variable-Scale Perturbation Model

Atmospheric variability on less than monthly time scales is produced by several types of

physical phenomena. Planetary scale Rossby waves have periods of several days and, at longer

wavelengths, may produce quasi-stationary wave patterns. Baroclinic instability of the Rossby
waves produces the familiar patterns of fronts, cyclones, and anticyclones of tropospheric weather.

Atmospheric tides, produced primarily by solar heating of water vapor in the troposphere and ozone

in the stratosphere, have planetary-scale wavelengths and predominately diurnal and semidiurnal

periods. Atmospheric tides tend to amplify with altitude, and are accounted for explicitly in the

Jacchia (MET) section of GRAM. Surface heating produces convective circulations that can lead to

thunderstorms. Instability or other mechanisms can produce organized lines of thunderstorms and

groups of thunderstorms called a mesoscale convective complex. Atmospheric gravity waves may be

produced by orographic flow effects or may be triggered by thunderstorms, tropical storms, or other
disturbances. Like tides, gravity waves tend to amplify with height but, since they are more irregular

in their nature, cannot be modeled explicitly. Atmospheric turbulence occurs at relatively small

4



scalesand canbe triggeredby surfaceheating,orographic effects, or instability processes produced

by gravity waves, tides, or jet stream shears associated with the Rossby waves.

In GRAM, all of these processes are parameterized stochastically by a random perturbation

model. In GRAM-90, a two-scale perturbation model was employed. A smaller scale parameter is

used to represent such small-scale processes as turbulence, mesoscale storms, and gravity waves,

while a larger scale parameter is used to represent such large-scale processes as Rossby waves,

cyclones and anticyclones, and tides. Each of these two scale parameters is used, in the sense of a

spectral integral scale, to characterize a spectrum that spans a significant range of wave numbers.
These two scale parameters are assumed in GRAM-90 to be altitude and latitude dependent only.

In GRAM-95, a new, variable-scale, small-scale perturbation model is introduced. Through

stochastic variation of the value of the small-scale parameter, this model incorporates many of the

features of the atmospheric turbulence model of Justus et al. (1990). In particular, the effects of

intermittency, the tendency of turbulence to appear in patches or layers, is incorporated. The model-

ing approach incorporated in GRAM-95, described more fully in section 2.6, results in a simpler

implementation, incorporating fewer simulation parameters, than the original Justus et al. model.

1.6 The New Pressure Perturbation Model

Details of the model for pressure perturbations have also been changed, to account for the

fact that there is more influence of large scales (and less influence of small scales) on the pressure

perturbations than there is on the density and temperature perturbations. This scale-selection

mechanism is produced by an effect of the hydrostatic condition on the variances of the large-scale

and small-scale components of pressure perturbations. The density perturbations are produced by

the same approach as in GRAM-90, but explicit correlation terms are now used in generating the

pressure perturbations. The temperature perturbations are now arrived at by invoking a perfect gas-

law constraint. Details of the new modeling approach are given in section 2.7.

2. TECHNICAL DESCRIPTION OF THE MODEL

2.1 The Jacchla Section (Above 90 km)

The Jacchia (1970) model for the thermosphere and exosphere was originally implemented to

compute atmospheric density and temperature at satellite altitudes. It represents total atmospheric
density by summing the densities of six, separately modeled, atmospheric constituents (N2, 02, O,

A, He, and H). The Jacchia model accounts for temperature and density variations due to solar and

geomagnetic activity, and diurnal, seasonal, and latitude-longitude variations throughout the height

range above 90 kin. The Jacchia model assumes a uniformly mixed composition below 105 kin, with

diffusive equilibrium among the constituents above 105 kin. Fixed (time-independent) boundary

values for temperature and density are assumed at 90 km. Alterations, described in Justus et al.

(1974a), were made to allow atmospheric pressure to be computed from the density and tempera-

ture. Geostrophic wind components, modified by the effects of molecular viscosity (Justus et al.,

1991) are evaluated in the Jacchia section by using the Jacchia model to estimate horizontal pressure

gradients. In GRAM-90 and GRAM-95, the NASA MET model (Hickey, 1988a,b) has been imple-

mented to characterize the mean atmosphere above 120 kin. Between 90 and 120 km, a fairing pro-

cess, described more fully in section 2.5, insures smooth transition between the MET model values
and the middle atmosphere data.



2.2 The Middle Atmosphere (MAP) Section (20 to 120 km)

GRAM characterizes the monthly mean middle atmosphere (20 to 120 km) by two gridded
data sets, one representing the zonal mean atmospheric values (gridded by height and latitude) and

the other representing the monthly-mean stationary wave patterns (i.e., stationary perturbations

about the monthly mean, gridded by height, latitude, and longitude). The zonal mean data set in

GRAM-90 and GRAM-95 was merged from six separate data sets covering the 20- to 120-km alti-

tude range (references in Justus et al., 1991). The zonal monthly mean data set (pressure, density,
temperature, and mean eastward wind component) is gridded in 10* latitude and 5-km height incre-

ments (-80* to +80* and 20 to 120 km). Zonal mean values at +90" are computed by an across-the-

pole interpolation scheme, discussed in section 2.5. Zonal mean values in between the gridded data

set values are interpolated vertically by hydrostatic and perfect gas law assumptions and horizon-
tally by two dimensional (latitude-longitude) interpolation methods (also discussed in section 2.5).

The stationary perturbation data set (standing wave perturbations in pressure, density, tem-

perature, and eastward and northward wind components) was merged from three sources of data on

planetary-scale standing wave patterns (references in Justus et al., 1991). This data set is gridded

in 10 ° latitude increments (-80* to +80°), 20" longitude increments (180", 160" W, 140" W .... 140" E,
160" E), and 5-km height intervals (20 to 90 km). Stationary perturbations are identically zero at the

poles. Stationary perturbation values are linearly interpolated in the vertical dimension and horizon-
tally by two-dimensional (latitude-longitude) interpolation methods (discussed in section 2.5).

2.3 The GUACA Section (0 to 27 km)

The GUACA data sets contain monthly means and standard deviations in temperature,

density, dewpoint temperature, sea level pressure, geopotential height, and eastward and northward

wind components. The data are gridded globally at 2.5* by 2.5" resolution in 144 longitudes (0 °, 2.5* E,

... 2.5* W) and 73 latitudes (-90 °, -87.5 °, ... +90"), at the surface and at 14 constant pressure levels
from 1,000 to 10 mbar (see details in appendix A).

For grid points where the surface is higher than one or more of the pressure levels, the data
at these levels are coded as missing. In order to estimate data at all altitudes from sea level (0 km)

and above (e.g., for a "valley" site that is at a lower altitude than the surface at the adjacent 2.5 grid
points), GRAM fills in all of the missing data from sea level to the surface at each grid point. This is

done by f'u'st using the hydrostatic relationship to compute the surface altitude at the grid point, from

sea-level pressure and the geopotential height of the lowest altitude grid point value. Next, the

hydrostatic assumption is used to fill in the thermodynamic values between sea level and the sur-

face, by assuming a constant temperature over this layer (the standard assumption used in comput-

ing sea-level pressure from the measured, station-level pressure). _

Array sizes in GRAM-95 are set large enough to read in the full global GUACA data set at

one time. This eliminates the feature in earlier GRAM versions whereby only a limited-area lati-

tude-longitude grid of lower altitude data were loaded in at one time. This feature should improve the
GRAM-95 performance for such applications as trajectory calculations, since (after the initial data

set-up process) there is no need for processing delays while a new low-altitude grid of data has to
be read in.

All "fixing" of the GUACA data is done globally as part of the GUACA array set-up and ini-

tialization. These processes include the filling in of values between sea level and the surface, filling

in of any missing data values, and correcting any discrepancies in the relationship among the
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standarddeviations in pressure,density, andtemperature.Density values at 70 mbar for the period-

of-record (1980 to 1991) data set require correction (see appendix A). Missing values (especially

winds at the poles and above 70 mbar for some years) are filled in. Dewpoint temperatures above

the 300-mbar level are filled in by extrapolation, using a decreasing relative humidity profile. These

GUACA-extrapolated moisture values are used only between 300 and 100 mbar, where they are

faired (fig. 1.2 and section 2.5) with the LaRC H20 values (McCormick and Chiou, 1994).

The perfect gas law implies certain constraints on the relationship that must exist between

the standard deviations and mean values of pressure, density, and temperature (Buell, 1970, 1972).

The GUACA data base values of these standard deviations are subjected to a test for this constraint

and are adjusted (so that density-temperature correlation does not exceed 0.999 in magnitude) for

all cases that produce a violation. Standard deviations in pressure (above the surface) are computed

from the standard deviations in geopotential height by a hydrostatic assumption.

2.4 Water Vapor and Other Atmospheric Species Concentrations

Water vapor and other atmospheric species concentrations are introduced in GRAM-95.
Concentration values above 90 km are obtained from the MET model, and values below 90 km are

obtained from a new species concentration data base, introduced in section 1.4 and discussed more

fully in section 4.3. Water vapor output from GRAM-95 includes both monthly means and standard

deviations. The water vapor values vary with month, height, latitude, and longitude within the

GUACA height range and vary with month, height, and latitude above this altitude (fig. 1.2).

Means and standard deviations in water vapor are represented in the form of vapor pressure

(N/m2), vapor density (kg/m3), dewpoint temperature (K), and relative humidity (%). Mean water

vapor values in the form of volume concentration (ppmv) and number density (molecules/m 3) are also

output. Conversions among these various forms, from the form in the input data (dewpoint tempera-

ture for the GUACA data and volume concentration for the other water vapor data sources), are

performed by various subroutines (wexler, tdbuck, dedt and d2edt2; see appendix D), using methods

described by Wexler (1976), Flatau et al. (1992), Buck (1981) and Elliott and Gaffen (1991). Only

monthly mean concentration values are output for the species other than water vapor, and their

values are output only in the form of volume concentration and number density.

Interpolation of the GUACA dewpoint temperature for altitudes between the input pressure
levels and for latitude and longitudes between the input grids points is handled the same as for the

other GUACA variables. Height and latitude interpolation between input height-latitude grid points

for water vapor above the GUACA range, and for the other species, is done by an adaptation of the

two-dimensional interpolation discussed in the following section (to do height-latitude interpolation,

rather than latitude-longitude interpolation).
J

Species concentrations c(t) are assumed to change with year, t, in GRAM-95, according to
the relation:

c(t) = c(to) (l+rt)t'to , (2.1)

where to is 1976 for the AFGL data and 1981 for the MAP concentration data and rt is 0.005 for CO2,

0.009 for CH4, 0.007 for CO, and 0.003 for N20. For ozone, rt varies linearly from 0.003 at the surface

to 0 at 15 km, linearly from 0 at 30 km to -0.005 at 40 kin, and again linearly from -0.005 to 0 at 120

kin. The rate of change, rt, for water vapor and the other constituents is assumed to be zero.
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Theseratesof changewereestimatedfrom data in table 14.5 and figure 17.1 of Graedel and Crutzen
(1993).

2.5 Interpolation and Fairing Techniques

Vertical Interpolation. Pressure p(z), temperature T(z), and density p(z), obey the perfect
gas law:

p = pRT, (2.2)

where R is the gas constant. They also agree very closely with the hydrostatic assumption:

dp/dz = -pg , (2.3)

where g is the acceleration of gravity. If we have grid-point pressure valtie_ pi and P2 and tempera-

ture values T1 and/'2 at heights zl and z2, then vertical interpolation to any height z (between zl and

z2) can be clone by assuming a linear temperature variation:

T(z) = T1 +y(Z-Zl) ,

where 1" is the temperature gradient:

1'= (T2-T1)/(z2-zl) •

(2.4)

(2.5)

The hydrostatic relation, with a constant temperature gradient, implies a power-law variation with

pressure. So pressure p(z) may be computed by:

p(z) = Pl [T(z)ITs ]a

a = log(p2/pl) / log(TilT2) .

where the exponent a is given by:

(2.6)

(2.7)

The density p(z) may in turn be found by solving from the perfect gas law relation (equation (2.2)).

In the GUACA height range, this vertical interpolation is _omplicated by the fact that the

moisture varies with height and the gas constant for moist air depends on the moisture
concentration. For the GUACA data, a variant of equation (2.6) is used that makes use of an

interpolated gas constant R and the fact that the exponent a should be given by a = g/(Ry).

The form of vertical interpolation given by equation (2.6) is used to fill in mean values of

pressure, density, and temperature between the input pressure levels of the GUACA data (with z

being geopotential height) and to fill in the zonal mean values between the input height grids of the

MAP data base. Other variables that do not obey perfect gas law relationships (e.g., wind

components, dewpoint temperature, and all standard deviations) are interpolated linearly in the
vertical.

Two-Dimensional Interpolation. Let V be a variable that is available on a two-dimensional

grid array (in x and y) and consider that we have the grid point values Vii = V(Xl,Yl), V12 = V(Xl,Y2),
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V21 = V(x2,Yl) and V22 = V(x2,Y2). Then any value V(x,y) (for x between x 1 and x2 and y between Yl

and Y2) may be found by the interpolation scheme:

V (x, y ) = ot" fl'Vl l + OtPflV12+ otfl'V21+ o_flV22 , (2.8)

where a = (x-xl)/(x2-xl), a'= l-a, fl = (Y-Yl)/(Y2-Yl), and fl'= 1-ft. This interpolation relation is

mathematically equivalent to that used (for latitude-longitude interpolation) in earlier GRAM

versions, but it is expressed here in a more symmetric notation.

Equation (2.8) is used to interpolate between latitude-longitude grid points (x = longitude,

y = latitude) for the GUACA grids and the stationary perturbation grids of the MAP data. For

variables that are dependent on a height-latitude (or a pressure-latitude) grid (such as the species

concentration data), then equation (2.8) may be used with y = latitude and x = height (or x = log

pressure). The variables actually interpolated for concentration data are the logarithms of the
concentration values.

Interpolation Across the Poles. Several of the GRAM-95 data bases that are height-latitude

dependent lack values at or near the poles. These can be filled in by an interpolation procedure that

assumes a parabolic variation (across both sides of the pole) that fits the last and next-to-last

available latitude. The results are always a weighted average of these last and next-to-last latitude

values. For example, if values of a parameter are available at _+70 ° and +80 °, but not at +90 °, then the

missing polar values are supplied by:

Y_o = (4 y+8o - Y+7o )/3 . (2.9)

If values are available at +60 ° and +70 °, but not at +80* or +90 °, then the missing values are supplied
by:

Y_o = (9 Y+7o -- 4 Y+6o)15 , (2.10)

and

Y+80 = (8 Y+70 - 3 Y+6o)15 • (2.11)

For the species Concentration data, this interpolation is done on the logarithm of the concentration
values.

Fairing Between Two Data Sets. If we have two data sets A(z) and B(z) that overlap each

other throughout the height range from zl to z2 (with A being valid below z2 and B being valid above

Zl, and z2 > Zl), then a fairing process:

C(z) = f(z)A (z)+[ 1-f(z)] B(z) , (2.12)

can insure a smooth transition for the faired variable C across the height interval from Zl to z2 iff(zl)

= 1 andf(z2) = 0. Thus, A(z) is used below Zl, B(z) is used above z2, and the faired variable C(z)

varies smoothly between A(z) and B(z) as z varies from Zl to z2. A linear form may be used for f:

f(z) = (Z2--Z)[(Z2--Zl ) , (2.13)
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or, with variablesfor which continuity of vertical derivativesis important,f may be taken as:

f(z) = cos 2 [Or/2) (z-zl)l(z2-zl)] • (2.14)

Equation (2.14) is used for fairing between the GUACA and MAP data between 20 and 27 kin, in

fairing between the MET model and MAP data between 90 and 120 km, and in fairing the helium

number density in the MET model between 440 and 500 km. For fairing the species concentration

data (see section 1.4), equation (2.13) is used, with the logarithm of the species concentration being
the variable to fair.

Seasonal and Monthly Int_rp01ation. Some of the species concentration data bases do not

contain monthly data. For example, the AFGL concentrations are seasonal averages (summer and
winter) only; the LaRC water vapor data have four seasonal averages; and the MAP water vapor

data have only certain months of the year (November through May). The initialization routines in

GRAM use an annual harmonic temporal variation model to estimate the concentration data for the

specific month to be simulated. For the AFGL data, this is accomplished by applying precomputed
weights to obtain a weighted average of the summer and wintervalues that is used to estimate the

value for the specific month. For the LaRC water vapor data, a weighted average of the two adjacent

seasonal values is used to estimate the monthly value (i.e., March-April-May and June:July-

August values are used to estimate the monthly values for May and June, with different weights

applied for each of these months). For the MAP water vapor data, a combination of annual harmonic

Fourier fit and 6-month displacement from northern to southern hemisphere (and vice-versa) is used

at initialization to establish the global values for each month from the monthly values of November
through May that are in the data base.

2.6 The New Variable-Scale Perturbation Model

GRAM uses a simple, first-order, auto-regressive model to compute a perturbation at each

new position from the correlated perturbation value at the previous position. In addition to

maintaining the correlation necessary between these successive perturbation values, the model

accounts for the effects of variation in the mean values and the standard deviation from one position
to another. Consider a normalized variate/2(x) (i.e.,/2 is the deviation of the value from the mean

value, divided by the standard deviation, all at the vector position x). The perturbation model

computes/2(x'), at the next trajectory position x', by the relation:

/2 (x') = r/2 (x)+(1-r 2) 1/2 q(x) , (2.15)

where q is a gaussian-distributed random number with a mean of 0 and a standard deviation of I,

and r is the autocorrelation between the successive values of the normalized variate, i.e.:

r = </2 (x9/2 (x)> , (2.16)

where the angle brackets denote an average. The autocorrelation value r is obviously a function of
the vector displacement tfr = x'-x.

For two normalized variates/2(x) and v(x) (each relative to its own mean value and each

normalized by its own standard deviation), that have a cross-correlation rc between them (i.e., rc =

< It(x) v(x) >)), then v(x 9, at the new position, can be computed from v(x) and/2(x') by:
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V(X') = rvV(X) + r_II(x') + rqq(X) , (2.17)

where the coefficients are given by:

r v= r(1-r2c)l[1-(r rc) 2] , (2.18)

rll = rc(1-r 2)/[ 1-(r rc) 2] , (2.19)

and

rq (1-r2v-r2-2rvrurcr) 112
(2.20)

Autocorrelation values, r, are computed by assuming an exponential correlation function:

r(_x) = exp (-_hlL h) exp (-t_zlL z) , (2.21)

where 6h and & are the magnitudes of the horizontal and vertical components of tY_x= x'--x, and Lh

and Lz are horizontal and vertical scale parameters that, in GRAM-90, are functions of height and

latitude only.

Both large-scale (representing planetary waves, tides, etc.) and small-scale (representing

gravity waves, turbulence, etc.) values of the scale parameters are used to compute separate (large-

scale and small-scale) perturbation values.

Cross-correlation values, re, for maintaining density-velocity cross-correlations, are read in

as part of the GRAM-95 "atmosdat" data base (see section 4.3). Cross-correlation values for

density and temperature are computed by the Buell (1970, 1972) relationships as a function of the

standard deviations of the thermodynamic variables.

For GRAM-95, it was desired to have a small-scale perturbation model that incorporates

many of the features (particularly intermittency effects) of the NASA turbulence model by Justus et

al. (1990). The latter model is considerably more involved, however, in that it requires the frequency

of occurrence of turbulence by intensity level (severe, moderate, or no turbulence). It also requires

several scale lengths, such as the minimum horizontal and vertical sizes for layers of turbulence of

various intensities, and several parameters to characterize the spatial variation of the turbulence
standard deviations.

After some design and testing, it was concluded that many of the features of the Justus et al.
(1990) model could be incorporated, in amore straightforward manner, into the previous GRAM

small-scale perturbation model by using a spatially variable length scale, Lh and Lz. To accomplish

this, normalized variates,/.t(x) (for the small-scale horizontal scale parameter Lh) and v(x) (for the

small-scale vertical scale parameter Lz), are used as in equations (2.15) through (2.21).

In addition to the data on turbulence characteristics in the references of Justus et al. (1990),

an extensive literature survey was conducted on the characteristics of gravity wave and other small-

scale perturbation phenomena (see the bibliography in section 6 for references from which data were

taken). These data were summarized into parameterized, height-dependent values for the mean

values and standard deviation values for the small-scale, Lh and Lz, as well as scale values to be

used in the correlation function, r, for the correlations in the spatial variations of the Lh and L z values.
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The cross-correlationbetweenthe horizontalandvertical scale(i.e., the rc value for the Lh.L z cross-

correlation) was determined to be approximated by:

rc(Lh'L z ) = 0.5+0.002 z (z < 200 km) , (2.22)

with a fixed value of 0.9 used above 200 km.

For parameters such as density, whose perturbations are computed via equation (2.15), the
mean-square density shear for density, p(x), is given by:

([p (x+6x)-p(x)] Z/l_xl z) = 2(1-r)(trjl_xl) 2 , (2.23)

where r is the autocorrelation for density p and crp is the standard deviation in density. For small

values of the separation distance I&l, r is given, from equation (2.21), by r = 1-1&l/Lx, where Lx is

the relevant scale parameter (e.g., Lh or Lz). Therefore, for small displacements along a trajectory,

the mean-square density shear becomes 2crp21(l&lLx ). Thus, in the Variable scale model, as Zh (or

Lz) varies along the trajectory (via equation (2.15)), the density shears will tend to become large
when the scales, Lh (or Lz), become small.

In this variable-scale perturbation model, the relevant scale parameters are taken to be a

function of position, i.e., a new normalized variate for Lx(x3 is computed from the previous value of

the normalized variate, Lx(x), by either equation (2.15), for Lh(x'), or equation (2.17), for Lz(x').

When Lx becomes sufficiently small, it is below the size of scales characteristic of turbulence (as set

by the turbulence scale values in Justus et al., 1990). When Lx is significantly larger than the turbu-

lence scales, it is characteristic of the gravity wave scales determined in the new bibliographic data
search (given in section 6). Thus, the simulation produces intermittent "patches" of turbulence when

the scales, Lx, go below this turbulence range. These turbulence scales are taken to be minimum

values for the scale parameters to be used in setting the density (or wind) perturbation correlations,

in equation (2.21). That is, if the perturbation model produces a value of Lx that is larger than the

minimum (turbulence) value, it is used directly in equation (2.21) in computing the density correla-
tions. If the perturbation model produces a value of Lx that is less than the minimum value, the mini-

mum value is used in equation (2.21) (but the smaller Lx value returned by the model is retained in

continuing the computations of the scale parameter values).

The scale parameters used for the spatial variations of Lx(x) mean that some distance

elapses before the values of Lx return above the minimum (turbulence) scale range. This is the

feature of the model that establishes the physical size of the "patches" of turbulence that are

encountered intermittently. The use of a minimum value for the scales, Lx, also ensures that the

density shears (or wind shears) do not get too large in value (by relation (2.23)).

The necessary parameters for evaluation of the variable-scale perturbation model (assumed

to be functions of height only) are read in as part of the "atmosdat" data base (see section 4.3).

These parameters are: the height, the mean value for Lh, the standard deviation for Lh, the minimum

(turbulence) scale value for Lh, the spatial scale value for Lh (used to determine the autocorrelation

values for L h, via an equation analogous to (2.21)), the mean value for Lz, the standard deviation for

_, the minimum (turbulence) scale value for Lz, the spatial scale value for Lz, and the standard

deviation for the small-scale vertical wind component in meters per second (the vertical wind is also

computed by the perturbation model equation (2.15)). All of the scale values in these data are in
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units of kilometers. The cross-correlationvaluesmaintainedbetweenthe Lh and L z values are

determined via equation (2.22).

2.7 New Pressure Perturbation Model

Pressure, density, and temperature perturbations (p', p', and T') are defined as the devia-

tions from the mean pressure, density, and temperature (Po, 19o, and To). In addition to the mean

values, the GRAM data bases (i.e., the GUACA and "atmosdat" files) provide values for the stan-

dard deviations in pressure, density, and temperature (O'p, erp, and O'T). Perturbations are assumed

to consist of both small-scale and large-scale components (denoted by subscripts s and I in the fol-

lowing).

The perfect gas law (equation (2.2)) and the hydrostatic relation (equation (2.3)) impose

relationships (Buell, 1972) that must exist between the perturbation values, namely:

pTPo = pTPo+ T'lT o , (2.24)

and

3(p7po)lOz = (T'ITo)IH , (2.25)

where H is the scale height (H = RTo/g).

The f'n'st step in simulating the perturbation values is to use relation (2.15), for both small-

scale and large-scale density perturbations (i.e., with tts= P's Icrps and/11= P't �cry). The standard

deviations of the small-scale and large-scale components are computed from the total standard

deviations by the values of the large-scale fractional variance for density, fL (see section 4.3). That

is:

 rpz= (fD in % ,
and (2.26)

= (1-]L)1/2% ,

where o'p is the total standard deviation in density (thus a_ = a_s+ a_pI ).

The next step in simulating the perturbation values is to use relation (2.17), for both small-

scale and large-scale pressure perturbations (i.e., with vs =p'slGps and vt =p't/erpt ). Equation

(2.25), however, implies that the relative pressure variance (Crp/Po) 2 must depend on both the vari-

ances and the scale values of the small-scale and large-scale temperature perturbations, namely:

(crp Ipo )2 _ (LslH)2 ( CrTslTo)2 + (LtlH)2 ( _TtlTo )2 , (2.27)

where Ls and Lt are the scale values for the small-scale and large-scale components, respectively.

Relation (2.27) means that the large-scale fractional variance for pressure, fLp, is related to the

large-scale fractional variance for temperature by the equation

fLp = fL / [fL+(Ls / Ll )2 ( 1-fL)] (2.28)
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The relative perturbationsin densityand pressurearegiven by:

pVpo = (trp/po)[(l_fc) 1/2, ±e lt2_s"-JL Pt] , (2.29)

and

P'/Po = (crplpo)[(1-fLp) 112Vs + fLp 1/2 Vi] (2.30)

Finally, the relative temperature perturbation (T/To) is found by solving from equation (2.24).

Note that equation (2.28) means that fLp is considerably closer to 1 than is ft.. For example, if

f_. = 0.7 and (LslLt) = 1/5, thenfLp = 0.98. Thus, the hydrostatic constraint (as applied via equations

(2.27) and (2.28)) means that (from equation (2.30)) the relative contribution from the large-scale

pressure perturbation is enhanced (and the relative contribution from the small-scale pressure per-

turbation is diminished) relative to what would be present without the scale-selection process

imposed by hydrostatics. Examples of this effect are illustrated in section 3.4. Note also that the

individual perturbations in pressure, computed as they are from equation (2.17), do not explicitly

satisfy the hydrostatic equation (2.25). However, the use of equation (2.17) does insure appropriate

values for the pressure autocorrelation (from rv), the pressure-density cross-correlation (from r_),

and the pressure standard deviation (from rq).

The perturbation modeling approach given above differs from that used in GRAM-90 in that

the scale dependence on fLp (equation (2.28)) was not accounted for, and the perturbations were
computed first for density, next for temperature, and last for pressure (rather than in the order--

density, pressure, temperature--now used). Perturbation modeling for the wind components has not

been revised from tha(used in GRAM-90 (0t-hei:-_han the use of the variable-scale approach for the

small'scale component, as discussed in the previous section).
i

3. SAMPLE RESULTS

3.1 GRAM-95 Monthly Mean Data and Comparison With GRAM-90

Figures 3.1 through 3.6 show vertical profiles of monthly mean temperature and density

(percent deviation from 1976 U.S. Standard Atmosphere values) and eastward wind component

(meters per second) for the months of January and July (period-of-record data) at KSC. Values from

both GRAM-90 (diamonds) and GRAM-95 (squares) are shown. For reference, the KSC Range
Reference Atmosphere 01RA) values are also shown (asterisks).

Above 30-km altitude, there is no difference between the GRAM-90 and GRAM-95 results in

figures 3.1 through 3.6 (because they are both based on the same middle atmosphere data base). In

general, the GRAM-95 results agree slightly better with the KSC RRA values than do the GRAM-

90 results. No systematic comparison has been made against all of the RRA's, so this level of

agreement with GRAM-95 may not be totally consistent across all of the range reference atmosphere

sites. Limited comparisons (Edwards Air Force Base (EAFB) and Fairbanks, AK, not shown)

indicate that GRAM-95 captures the relevant seasonal and geographic variations quite well (as did

GRAM-90). From earlier experiences with GRAM-90, it is known that its lower altitude data base

did suffer some problems (missing altitudes, violations of hydrostatic conditions, etc.) in several

regions and for several months. Although automated routines in GRAM-90 attempted to correct

14



theseproblemswheneverthey were encountered,theseattemptswere not always completely
successful.The new GUACA databasehasbeenthoroughlyquality controlled,and the initialization
proceduresinsurethat the dataarecomplete(or are filled in asnecessary)and satisfy the perfect gas
law and hydrostatic relationships(seesection2.3). Progressmessages(seeappendixC) advisethe
userif unusualamountsof datahadto be filled in during this initialization process.

Figures%7 through 3.10 showheight-latitudecrosssections(pole-to-poleand 0 to 30 km)
of monthly meanvaluesof temperature(K) or density(percentdeviationfrom 1976U.S.Standard
Atmosphere)for the longitudeof 80° W (theapproximatelongitudeof KSC)for the monthof January
(period-of-record),from bothGRAM-90 andGRAM-95. Thereis a greatdeal of similarity between
theGRAM-90 and GRAM-95 results.In general,the contour valuesare smootherin the GRAM-95
results (figs. 3.8 and 3.10); the GRAM-90 contoursindicateseveralareasof slight roughness(figs.
3.7 and 3.9). Height-latitude (and latitude-longitude)crosssectionsfrom GRAM-90, shownin
Justuset al. (1991) for heightsabove30 km arenot changed,becausethey arebasedon the same
middle atmospheredatabaseas GRAM-95.

One apparentlymajor anomalyin the GRAM-95 temperaturegraph(fig. 3.8) is seenin the
220 K contournearheight l0 km andlatitude45° N. Examinationof theGUACA databaseshows
that this anomalycould be smoothedawayby adjusting the 250-mbar temperatures at 80 ° W, 45 ° N,

and 47.5 ° N by less than 1° (from slightly less than 220 K to slightly more than 220 K). This may

indicate a slight error (less than 1°) in the mean temperature at these two locations, or it may merely
indicate that there is more spatial structure to be seen at some locations because of the new higher

spatial resolution (2.5 ° by 2.5 ° latitude-longitude grids) in the GUACA data base.

The apparent minor anomalies in the GRAM-95 density contours near the equator at 0 km

(fig. 3.10) are due to the fact that (because of the Peruvian Andes) the surface is significantly above

sea level (by as much as about 1.6 km) throughout much of this area. See the discussion about

"subsurface" data extrapolation in section 2.3.

Figures 3.11 and 3.12 compare similar height-latitude cross sections (at 80 ° W longitude) of

monthly mean eastward wind components (meters per second) from GRAM-90 and GRAM-95. The

winds below 25-km height are estimated by the geostrophic wind relations (from horizontal pressure.

gradients) in GRAM-90. Although the GRAM-90 winds agree fairly well with the GRAM-95
results below about 20 km and for latitudes more than about 20 ° from the equator, figure 3.11 shows

considerable deviation of the GRAM-90 winds in this near-equatorial region and at heights from

about 20 to 25 km. The geostrophic winds are known to be unreliable very near the equator, and
GRAM-90 attempts to compensate by evaluating near-equatorial winds by interpolation between

geostrophic wind values on each side of the equator by about 15". Figures 3.11 and 3.12 show that
the GRAM-90 winds estimated this way are not always very accurate, and that considerable

improvement is found by using the observed wind data in the new GUACA data base. Since the

geostrophic winds of GRAM-90 must use pressure gradients (small differences in pressure across

adjacent grid points in the data base), they are especially subject to small pressure errors. Most of

the problems with the geostrophic winds in GRAM-90 come at the higher altitudes (20 to 25 km) of
the lower altitude GRAM-90 data base (0 to 25 km). It is in this altitude range that the GRAM-90

data base is most subject to data unavailability or violations of hydrostatic conditions. All of these

problems should be corrected with the use of observed wind components in GRAM-95.
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3.2 Water Vapor and Other Atmospheric Species Concentrations

Figure 3.13 illustrates a height-latitude cross section, at 80 ° W longitude, for the GRAM-95

water vapor volume concentration (ppmv). As outlined in section 1.4 (fig. 1.2), the GUACA 2.5 °
gridded data base provides the H20 information below 300 mbar (about 9 km). Above this level, the
H20 data come from the LaRC data (or fairing between the GUACA and LaRC data). Figure 3.13

shows that these two data sets, and the fairing process between them, provides a continuous,
smoothly varying set of profiles over the 0- to 40-km height range. Similarly, the transition to MAP
and AFGL H20 data (see fig. 1.2 for details) is also smooth, as illustrated in figure 3.13.

The comparable height-latitude cross section for ozone, shown in figure 3.14, also indicates
that the transition from AFGL to MAP (and back to AFGL) data is smooth (see discussion on

ozone height ranges in section 1.4). For ozone, the GRAM-95 data is height and latitude dependent
only. There is no longitudinal variability, as is provided for water vapor by the GUACA data base.

Figure 3.14 does not show significantly lower ozone values near the south pole (even for the
Southern Hemisphere spring period) as might be expected from "ozone hole" considerations. This is
due in part to the fact that the MAP ozone data base is for the period 1978 to 1983, a time period
before the ozone hole was most fully developed. Although GRAM-95 projects a height-dependent

yearly trend for ozone concentration (see section 2.4, equation (2.1)), the temporal trend is not cur-
rently assumed to be latitude dependent. Thus far, the significant temporal increases in the levels of
ozone depletion appear to be confined to the near-polar Antarctic regions, and are not a global ozone
decrease phenomenon. Another factor in the lack of ozone hole appearance in GRAM-95 is that the
MAP data base does not have observations that extend to the South Pole during the winter and

early spring, when solar illumination and backscattered UV levels are low. These missing MAP
values near the poles are estimated by the "across-the-pole" interpolation scheme, discussed in
section 2.5, but this technique may not capture the strong gradients, toward low ozone value near

the pole, during an intense ozone hole condition.

3.3 Example Density Perturbations and Comparison With Space Shuttle Data

This section shows results from the new, variable-scale perturbation model in GRAM-95,
discussed in section 2.6. Comparisons are made between simulated density perturbations and those

observed along space shuttle Space Transportation System (STS) reentry trajectories. Two sets of
observed STS reentry density data are compared against the model simulations. In addition to the
turbulence model parameters of Justus et al. (1990) and the gravity wave data gathered from the
bibliography of references in section 6, the first set of 22 observed STS density profiles (Findlay et
al., 1988) were used in part to adjust some of the perturbation model parameters. The second set of
10 observed STS density profiles (Findlay and Jasinski, 1990) were not used as part of the model
development, and thus constitute a totally independent data set for model comparisons.

Tables 3.1 through 3.4 give summaries of the model-simulated and STS-0bserved density

perturbations (percent.deviation from 1976 U.S. Standard Atmosphere) and density shears (changes
in density per change in altitude as the STS vehicle moves along its trajectory, in units of percent per
kilometer of height). The STS observations were evaluated along the reentry trajectory at positions
that represented every 100 m of vertical displacement. It should be noted that the STS reentry
trajectories are rather horizontal (i.e., the horizontal displacements between successive
observations may exceed the vertical displacements by several fold). Large density shear values
(e.g., the two observations that exceed 100 percent&m) do not necessarily mean large absolute
changes in density during short displacements along the trajectory path. For example, a density
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shear of 100 percent/km (10 percent per 100 m of vertical displacement) may represent a 10-percent

density change that occurs over several km of (nearly horizontal) trajectory path.

Tables 3.1 and 3.2 show the first set of density perturbations and density shears, modeled

and observed (Findlay et al., 1988), for the two height regions 45 to 65 km and 65 to 85 km. The STS

flight numbers are as used by Findlay et al. (in which STS-11 through STS-32 are used for STS-41-

B through STS-6 I-C). Other columns show the month of the flight, the landing site (EAFB =
Edwards AFB; WSMR = White Sands Missile Range; KSC = Kennedy Space Center) and whether

the reentry trajectory was at low (L), medium (M), or high (H) latitudes. Data values show, for each

height range, the model and observed average value over the height range, the standard deviation
over the height range, and the maximum absolute value within the height range. At the bottom of
each table, the average, standard deviation, maximum, and minimum values across the complete set

of 22 trajectories are shown.

Tables 3.3 and 3.4 show comparable statistics for model versus observed (Findlay and

Jasinski, 1990) densities and density shears from the (independent) 10 trajectories for STS-26

through STS-36 (to avoid confusion with similar numbering used by Findlay et al., as shown in
tables 3.1 and 3.2, the STS numbers STS-xx in tables 3.3 and 3.4 are shown as STSFxx). Both the

dependent (tables 3.1 and 3.2) and independent (tables 3.3 and 3.4) datasets show that the new

variable-scale model produces both density perturbations and density shears that are well

representative (in their statistical properties) of those observed during actual STS reentry
conditions.

Examples of the density perturbation model simulations are provided by figures 3.15 and 3.16,

which plot density perturbation (percent deviation from 1976 U.S. Standard Atmosphere) versus

height along the trajectory path. Figure 3.15 is for STS-04 (July 4, 1982), which encountered the

largest observed value of density shear (12.25 percent over a 100-m vertical displacement; see

table 3.2). Figure 3.16 shows the modeled and observed profiles for the STS-32 reentry, during
which rather small shears were encountered. The simulated density perturbation profiles in figures

3.15 and 3.16 cannot reproduce all of the details of the observed profiles at each specific altitude. The
GRAM-95 perturbation model is statistical, not predictive, in nature. Nevertheless, the simulation

results in these figures illustrate that the model results appear similar in general character to the
observed perturbations. The statistical summaries in tables 3.1 through 3.4 illustrate that the sta-

tistical results from multiple simulations reproduce, in their statistical properties, the observed

statistics of actual STS trajectory conditions.

Additional examI_les of GRAM-95 output and comparisons with GRAM-90 results are pro-

vided by Johnson et al. (1995).

3.4 Example Perturbations and Comparison With Rawinsonde and STS Data

Figures 3.17 and 3.18 show a sample of 100 profiles of January density and pressure

(expressed as percent deviation from the January monthly mean) for the rawinsonde data set dis-

cussed by Smith and Adelfang (1995). The profiles plotted are every tenth one from the total of 1,066

January profiles measured at KSC over the period from 1957 to 1985. The heavy lines in figures 3.17

and 3.18 show the envelope of 3 cr values (i.e., 3 times the standard deviation of the 1,066 profiles,

also expressed as percent of the mean). Approximately 0.1 percent of statistically independent

values should fall above (and 0.1 percent below) this 3cr envelope, if the values are gaussian-

distributed. Means and standard deviations observed from the January KSC data set are given in

table 1 of Smith and Adelfang (1995).
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GRAM simulations(suchasthoseshownin figures3.1 and3.3) indicate that the GRAM-95
(GUACA database)meanvaluesfor the periodof record(1980to 1991)at KSC agreeclosely with
thoseobservedfrom the rawinsondedataset.The GRAM Januarymonthly meanpressureand tem-
peratureat KSC differ from the observedvaluesby 0.4-percentroot-mean-square(rms); while the
GRAM meandensity deviates0.6-percentrms from the observedKSC value.

Figure 3.17 showsa significant amountof small-scalestructurein the rawinsondedensity
profiles, while the pressureprofiles in figure 3.18showthat muchmoreof the pressurevariation is
dueto large vertical scales.For comparison,figures3.19and3.20show a set of 25 profiles of density
andpressuresimulatedfor January(period-of-record)by the new perturbationmodel in GRAM-95
(seesection2.7). Details of the 30"envelopesaresomewhatdifferent betweenthe GRAM simula-
tionsand the rawinsondedataset. In part, thesedifferencesmaybe dueto the different periodsof
record (1980to 1991for GRAM and 1957to 1985for theKSCrawinsondes).Most of the discrep-
ancyin 0"valuesbetweenGRAM andthe KSC rawinsondesmay bedue to local structurethat is not
resolvedin the 2.5*GUACA database.The KSC stationis not one thatroutinely contributesto the
ECMWF model initialization process,on which the GUACA datais based(seeappendixA).

The essentialfeaturesof major small-scalecontribution to density perturbationsand major
large-scalecontribution to pressureperturbations,are illustrated in the GRAM resultsof figures
3.19 and 3.20. Like the rawinsondeobservations,theGRAM perturbationstend to clusterat small
deviationsfrom themonthly mean,with occasionalexcursionsto near(or exceeding)the 30"
envelopevalues.In contrast,the model resultsof Smithand Adelfang (1995)are for extreme-value
perturbations.Thus, the perturbationprofiles illustrated in their paperappearclusterednearthe 30"
envelopevalues,with relatively few valuesat small deviationsfrom the monthly mean.Although
GRAM perturbationsmay occasionallyexceedthe3o" envelope(on theorder of 0.1 percentof the
time), they represent,with a reasonabledegreeof realism,the statisticalcharacteristicsof typical
observedprofiles.

Figure 3.21 illustrates the featureof predominantlarge-scalepressureperturbations,as
measuredby the spaceshuttleSTSduring the STS-04reentry (July4, 1982);seealso figure 3.15.
Density and pressurevalues in this figure areexpressedaspercentdeviationsfrom the 1976U.S.
Standardatmospherevalues.The pressureprofile is seento beconsiderablysmootherthan the
densityprofile, reflecting the dominanceof the large-scaleperturbationsin pressure.STS-04simu-
lations of density and pressureperturbations,simulatedby GRAM-95 with the approachdiscussed
in section 2.7, also show considerablylesssmall-scalestructurein the pressureprofile than the
densityprofile (fig. 3.22).The fact that the GRAM-simulatedpressuresarenot quite assmoothas
the STSobservedpressureprofile may bedue in part to excessivesmoothingof the STS-derived
pressurevalues. The STS density observationsareconvertedto pressurevaluesby assuminga
purely hydrostaticvariationwith altitude.TheactualSTSreentrytrajectorychangessignificantly in
horizontal distancewhile thevehicle is movinga relatively small displacementin height (i.e., the
trajectory is fairly horizontalat the altitudesof figs. 3.21and3.22).

Both the rawinsonde(0- to 25-km altitude) and STS(45- to 95-km altitude) results show
that the scale selectionprocessfor pressureperturbations(equations(2.28) and (2.30)) do a
reasonablejob in representingthe relative contributionsof the large-scaleand small-scalecompo-
nentsof the pressureperturbations(mostly large-scale)and density and temperatureperturbations
(significant small-scalecontribution).
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Standard Atmosphere) from the GRAM-95 variable-scale perturbation model (diamonds) and

observed (x's) for the STS-04 reentry on July 4, 1982 (largest shears observed over the
32 reentries in tables 3.2 and 3.4).
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Standard Atmosphere) from the GRAM-95 variable-scale perturbation model (diamonds) and
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shear cases in tables 3.2 and 3.4).
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Figure 3.19. A sample of 25 profiles of density (percent deviation from monthly mean), simulated by
GRAM-95, for January (1980 to 199.1 period of record) at KSC. Heavy lines are the

envelope of +3 standard deviations.
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Figure 3.20. A sample of 25 profiles of pressure (percent deviation from monthly mean), simulated
by GRAM-95, for January (1980 to 1991 period of record) at KSC. Heavy lines are the

envelope of +3 standard deviations.
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Figure 3.21. The observed profiles of density (solid line) and pressure (dashed line) along the
reentry trajectory of STS-04, expressed as percent deviation from the 1976 U.S. Standard

Atmosphere values.
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Figure 3.22. GRAM-95 simulated profiles of density (solid line) and pressure (dashed line) along
the reentry trajectory of STS-04, expressed as percent deviation from the monthly mean values.
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4. GRAM-95 USER'S GUIDE

4.1 General Program Review

The 1995 version of the Global Reference Atmospheric Model, GRAM-95, like its predeces-

sors, is designed to produce atmospheric parameter values either along a linear path (to be called a

profile), with automatically stepped height, latitude, longitude, and time increments, or along any set

of related time-position data (to be called a trajectory), which must be provided to the program as a
separate input file.

The GRAM-95 has been developed primarily for a Unix environment, specifically SGI's IRIX

system, but its code may be adapted for other platforms relatively easily (e.g., for VAX platforms set
the variable, iswap, to zero in the main driver file, gram95.f, before compiling and running, see section

4.7). However, care must be taken to properly maintain the necessary links to the two data bases

(three, if a trajectory data file is desired) needed for proper functioning. These data bases are the

GUACA data base, jointly produced by the U.S. Navy and NOAA and supplied via a CD-ROM

medium (see appendix A) and the GRAM-95's own "atmosdat" file which includes various data

bases for pressure, density, temperature, winds, species concentrations, and random perturbation

statistics (see section 4.3). The primary input data file in the Unix environment consists of lines with

pathnames pointing to the location of these data bases and to desired output files, as well as two

lines of "initial" data containing the values of the program options, initial position, profile

increments, solar activity, times of year and day, and other information required before the
calculations can begin (see appendix B).

Output of the GRAM-95 may consist of as many as three files. The primary output file pre-
sents values of mean pressure, density, temperature, and u, v, w wind components, along with their

associated "total" values (i.e., mean plus perturbation), and actual perturbation values which

entered into the total calculations. In addition, moisture values have now been included (see

appendix B). Another output file, selectable by the user, presents concentration values for several

atmospheric species, including water vapor (see appendix B). A third output file was designed to be

both selectable and easily modified by the user as input to other programs (fig. 4.2).

A complete discussion of the input, output, program requirements, and operational character-
istics of the GRAM-95 program is given in the following sections of this user's guide.

4.2 The GUACA Data Base (0 to 27 km)

The GUACA data base's CD-ROM storage hierarchy has been built into the GRAM-95

code. Thus, if some or all of the data base is to be stored on disk rather than being left accessible via
the CD-ROM drive, that same structure must be followed in the disk storage scheme, or the code

must be modified accordingly.

All of the GUACA files required by the GRAM-95 program reside on the CD-ROM under the

subdirectory, 2p5deg. Under that subdirectory are eight subdirectories for the individual years 1985
through 1991 and the period-of-record (por), the latter presenting the means over the years 1980 to
1991. Each of these "yearly" subdirectories holds 12 subdirectories, one for each individual month,

and each monthly subdirectory holds 20 files (eXcept pot holds 21), although only the following 14

are needed by the program: mtmpxx.dat, mdenxx.dat, mdwpxx.dat, muwdxx.dat, mvwdxx.dat,

mhgtxx.dat, mslpxx.dat, stmpxx.dat, sdenxx.dat, sdwpxx.dat, suwdxx.dat, svwdxx.dat, shgtxx.dat,
and sslpxx.dat, where "xx" is the month.
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The files' namesareindicative of thetypeof datathey hold, thosebeginningwith "m" hold
meandatawhile thosebeginningwith "s" hold the standarddeviation of thosemeans.Likewise,
thosehaving "tmp" in their nameshold temperaturedata,"den", density, "dwp", dewpoint,
"uwd", u-component wind, "vwd", v-componentwind, "hgt", height, and "sip", sea-level pressure
data.

For more detailson theGUACA database,refer to appendixA. Also seesection4.7 for
possiblecodemodifications that might be requiredto readthe GUACA databaseon your system.

4.3 The "atmosdat" File

The "atmosdat" file consists of several types of data in several formats, all of which are

easily readable as ASCII characters. The file requires a little more than 2.5 Mb of disk storage. The

first portion of the file is essentially the same as parts of the "SCIDAT' file of GRAM-90 (Justus

et al., 1991). The remainder of the file has been added, expanding capabilities for the current GRAM-
95 version.

Zonal-Mean Data. The zonal-mean data consists of 12 monthly sets of zonal-mean values

for pressure, density, temperature, and zonal wind, tabulated at 10 ° latitude intervals from -90 ° to

+90 ° and 5-km height increments from 20 to 120 km for each month. Prefix codes, ZP, ZD, ZT, and

ZU indicate pressure, density, temperature, and zonal wind, respectively. Each record contains the

code, the month, the height in km, and the -90 °, -80 °, .... 80 °, 90 ° latitude values of the parameter

expressed as a four-digit integer, with an exponent common to all of the values in the field appearing

at the end of the record. Thus, a value of 2,761 with an exponent at the end of the record of -6 would

be the same as 2,761x10 -6 = 2.761x10 -3. Pressure data are in units of N/m 2, density values are in

kg/m 3, temperatures are in K, and zonal winds are in m/s. The zonal-mean data set contains 1,008

FORTRAN readable records, with the code and 22 integer values in each record (format A2, I4, 15,
1916 i4)

Station_ry Perturbations. The stationary perturbations are latitude-longitude dependent,

relative perturbations, to be applied to the zonal-mean values. Data for each of 12 months are given
for both Northern and Southern Hemisphere latitudes. Prefix codes SP, SD, ST, SU, and SV indicate

stationary perturbation values for pressure, density, temperature, zonal (eastward), or meridional

(northward) wind components, respectively. Each record contains the code, the month, the height in

km, the latitude (-80 to +80) in degrees, and then 18 values of stationary perturbations, in permil
(percent/10) for the thermodynamic variables, and 0.1 m/s for the winds, at longitude 180 °, 160" W,

140" W ..... 140* E, and 160" E. The monthly mean value, y,n, for parameter, y (pressure, density or

temperature), at any latitude and longitude can be computed from the zonal-mean Value, _Zy, at the

latitude, and the stationary perturbation, Sy (in _ m!l)_ fat the latitude and longitude,: byttie relation:

Ym = Zy (I+s r/1,000) . (4.1)

For zonal (eastward) wind components, the monthly mean is um= z,+su, while meridional

(northward) mean winds are equal to the stationary perturbation value, i.e., v,n = su. Note that the

stationary perturbation values at 90 ° latitude are always zero. The stationary perturbation data con-

sists of 15,300 FORTRAN readable records, with a code and 21 integer values in each record

(format A2, 2115).

i

|

i
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Random Perturbations. Random perturbation magnitudes (standard deviations) are latitude

dependent only. Prefix codes RP, RD, RT, RU, and RV indicate random perturbation magnitudes in
pressure, density, temperature, zonal wind, and meridional wind components, respectively. Each

random perturbation record has the code, the month, and the height in km, followed by 19 values of

random perturbation magnitude, at 10 ° latitude increments from -90* to +90 °, followed by a common

exponent value. These data give the relative standard deviations crplp, trp/p, and tr74T (in percent)

for use in the random perturbation model. The code RU and RV data are similar, except that the wind
perturbations are absolute deviations in m/s, and cover the height range 0 to 200 km, whereas the

RP, RD, and RT data cover 20 to 200 km. Random perturbation magnitudes for 0- to 27-km altitudes

are provided by the GUACA data base for both the thermodynamic and wind variables. The random

perturbation data consist of 1,596 FORTRAN readable records with a code and 22 integer values in
each record (format A2, 14, 15, 1916, 14).

Large-Scale Fraction Data. From daily difference analysis described in section 2 of Justus et

al. (1980), the fraction of the total variance (o -2 from the random perturbation data) contained in the

large-scale perturbations has been determined as a function of height and latitude. The "atmosdat"

file contains the annual average fraction (expressed as per mil) of total variance contained in the

large-scale. Large-scale and small-scale magnitudes, trL and as, are computed from the fractional

data, fL, in per mil (code PT for pressure, density, and temperature or code PW for winds), by the
relations

CrL= (fL]l,000)I/20"T, (4.2)

crs= ((l-fL)ll,O00)1/2CrT, (4.3)

where trr is the total perturbation magnitude. The code PT and PW data sets each contain 25

FORTRAN readable records, with code word PT or PW, followed by 17 integer values in each record

(format A2, 1715) for code PT and 12 integer values (format A2, 1215) for PW code records. In the

GRAM-95 data base, significant changes have been made in the large-scale fraction values for

pressure perturbations, and for density and temperature perturbations below about 40 km (see dis-

cussion in section 2.7 and sample results in section 3.4).

Density-Velocity Correlations. Daily difference analysis was also used to evaluate the cross

correlations for use in the velocity perturbation model described in section 2 of this report and the

Justus et al. (1980, 1988) reports. Both large-scale and small-scale values of the density-velocity

correlations were evaluated and are given in the "atmosdat" data base (codes CL and CS) in per mil

(i.e., divide by 1,000 to get correlations in the range -1 to +1). The code CL and CS data consist of

50 FORTRAN readable records, with code word CL or CS followed by 12 integer values in each
record (format A2, 1215).

All of the foregoing code values in the "atmosdat" data base are ingested into the GRAM-95
program through the subroutine setup found in the initial.f file.

Variable-Scale Random Perturbation Model Data. Variable-scale random perturbation model

data appears next in the "atmosdat" data base. They consist of 29 FORTRAN readable records,

containing a code (RS) and 10 real (floating-point) values each (one height and nine associated

parameters; see section 2.6 for discussion), which are ingested into the GRAM-95 program through

the subroutine scalinit found in the initial.f file. The format is A2, F5.0, 2F7.1, F7.2, F7.1, 5F7.2.
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The remaining data in the "atmosdat"databasearevaluesneededfor atmosphericcon-
stituent concentrationcalculations.

LaRC Data. The next segment of data in the "atmosdat" data base is the NASA LaRC con-

centration data (McCormick and Chiou, 1994) for the atmospheric constituent H20. The data consist

of four groups of 35 FORTRAN readable records of a code and nine data values each (one height and

eight associated array values at latitudes -70* through +70°), and are ingested into the GRAM-95

program through the subroutine concinit found in the speconc.f file. The four record groups present
seasonal data at latitudes -70* through +70* for heights 6.5 through 40.5 km. Codes are LDJF for

December-January-February, LMAM for March-April-May, LJJA for June-July-August, and LSON

for September-October-November.

_. The next-to-last segment of data in the "atmosdat" data base is the AFGL
concentration data (Anderson et al., 1986) for the atmospheric constituents, H20, 03, N20, CO ,and

CI-I4. The data consist of five groups of 50 FORTRAN readable records of six values each (one

height and five associated array values, for each of the five constituents), and are also ingested into

the GRAM-95 program through the subroutine concinit. The five record groups present tropical
(AFTR), midlatitude summer (AFMS), midlatitude winter (AFMW), subarctic summer (AFSS) and
subarctic winter (AFSW) data. Tropical data are for latitudes of +15"; mid-latitude data are for +45*;

and subarctic data are for +60*. As necessary, a 6-month displacement is used to estimate Southern

Hemisphere values from Northern Hemisphere values.

MAP Data. The last segment of data in the "atmosdat" data base is the Middle Atmosphere

Program (MAP) concentration data (Keating, 1989) for the years 1979 to 1983. The code 03 data
are for ozone at 24 pressure levels (0.003 to 20 mbar) for each of 12 months. Each of the 288 records

consists of the code, the month, the pressure level (mbar), and data values for 17 latitudes (-80* to

+80*) and a common exponent value. The code H20 data are for water vapor at 11 pressure levels

(1.5 to 100 mbar) for each of 12 months, followed by 8 annual values (denoted by month 13) for the

pressure levels 0.01 to 1.0 mbar. There are a total of 140 H20 records. Each contains the code, the
month, the pressure level (mbar), and five mean values at latitudes -60", -45 °, +15 °, +45 °, and +60*

(with -60 ° having been estimated by 6-month displacement of +60 ° data), followed by five standard
deviation values at the same latitudes. The code N20 data are for MAP nitrous oxide (and similarly

the code CH4 data are for methane). The N20 and CH4 data consist of 204 records each. Each

records contains the code, the month (1 to 12), the pressure level (17 levels, 0.1 to 20 mbar), data at

15 latitudes (-70 ° to +70*) and a common exponent. The code OX data is for atomic oxygen at 19

altitudes (130 to 40 km) for each of 12 months. There are 228 total records, each containing the code,

the month, the height (km), the data values at 17 latitudes (-80* to +80*) and a common exponent.
Units of the MAP code OX data are atoms/cm 3. The MAP code 03, H20, and CH4 species data

values are volume concentrations in units of parts per million by volume (ppmv), while the code N20

data are in parts per billion by volume (ppbv).

The LaRC and AFGL data are read in by subroutine concinit, while the MAP concentration

data are read in by subroutine mapinit (both in the initial.f file).

4.4 The Input Data File

The input data file (e.g., "input.dat") is read into the program by the init subroutine, located

in the initial.f file, and usually consists of eight lines (it may have nine or more if the user desires to

run the same profile again with different random number seeds by placing each seed on a new line, as

described below). The first six lines consist of "pathnames" (up to 64 characters in length) pointing
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to various files, while the last two lines (in the usualcase)provide the initialization input dataasin
previousversionsof the GRAM (seeexampleinput file in appendixB).

Lines 1 through 6. The first line is the pathname for the "atmosdat" data base (i.e., the
atmpath parameter), the second is the pathname for the GUACA data base (guapath), and the third

is the pathname for the trajectory data file (trapath) if one is desired, otherwise an entry of "null" is

entered. The fourth line is the pathname for the standard output file (prtpath) which, if it does not

already exist, and standard output is desired, is created. The fifth line is the pathname for the special

user-formatted file (nprpath) if one is desired, otherwise an entry of "null" is entered. The sixth line
is the pathname for the species output file (conpath) which, like the standard output file, is created if

its output is desired and it does not already exist. If any files, pointed to by the fourth through the

sixth lines, do already exist, they will be overwritten, thus some care must be taken to rename the

already existing files if the user wishes to keep them.

Line 7. The seventh and eighth lines of the input data file contain free-field (list-directed)

initialization data (values may be separated by either spaces or commas). The seventh line consists
of 19 values:

1. Initial height--h 1" The initial height, in kilometers, for the beginning point of the profile or

trajectory (although in the latter case, the beginning point is read in as the first record of the trajec-

tory file). This can be any positive real number.

2. Initial latitude--phi 1: The latitude of the initial position, in degrees, with southern lati-

tudes negative. If the initial latitude, or any subsequent latitude is greater than 90* in absolute

magnitude, then a transformation is made:

lat. = (180-11at.I)(lat./llat.I) , (4.4)

lon.= lon.+180 . (4.5)

Both the initial latitude and initial longitude, below, are real number (floating-point) parameters.

3. Initial longitude--thetl: The longitude of the initial position, in degrees, with west longi-

tudes negative. At any time during the run, if a longitude gets outside the -180" to +180" limits, it is

put back into that range by adding or subtracting 360 °, as necessary.

4. Solar 10.7-cm flux--f10: The daily value of solar 10.7-cm radio noise flux (F10.7) in units

of 10 -_ Wm -2 Hz -1 Bandwidth (the normal units for this parameter) at the time for which the

atmospheric values are to be computed. This parameter is used only in the altitude range where the

NASA/MSFC MET (lacchia) model (Hickey, 1988a,b) is invoked (via subroutine jacmod and

associated subroutines--jacch, j70, tree, tinf, jac, slv, slvh, fair5, and gaussmand functions--molwt

and temp, found in the models.f and metprog.f files), thus, for altitudes below 90 km, a value of zero

may be used. Historically, a value of 230 has been used for both design steady-state, as well as
maximum solar activity conditions. For "quiet sun" conditions, a value of 150 may be used. Both the

daily solar 10.7-cm flax and the mean solar 10.7-cm flux, below, are real number variables. When

running the GRAM model in the altitude range of the MET model, the following inputs should be

used relative to the daily F10.7 values. For dates prior to the current date, the previously observed

daily values of F10.7 should be used. For the current date, the currently observed daily value of

F10.7 should be used. For dates subsequent to the current date, the appropriate month value of the
13-month, smoothed mean F10.7 (see discussion below) estimated value, based on the output of
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theNASA/MSFC linear regressionprogrammodel,shouldbe used.This output is updatedmonthly
andis availableupon requestto Chief, ElectromagneticsandEnvironmentsBranch,NASA/MSFC.

5. Mean solar 10.7-cmflux---fl0b: The+81-day (162-day) mean solar 10.7-cm radio flux,

centered at the time for which the atmospheric values are to be computed. This parameter, like the

fl0 parameter, is used in the altitude range where the MET model is valid, to compute the nighttime
minimum global exospheric temperature (equation 14 in Jacchia, 1970). Like the fl0 parameter, a

value of zero may be used for altitudes below 90 km, a value of 150 for "quiet sun" conditions, and a

value of 230 for design or "active sun" conditions. When running the GRAM model in the altitude

range of the MET model for dates 81 days or more prior to the current date, the previously observed

values of daily FI0.7 should be used to calculate the +81-day (162-day) mean solar 10.7-cm radio
flux centered at the time 81 days or more prior to current date. For the dates 81 days prior and up to

the current date, the observed daily F10.7 should be used plus the 13-month, smoothed mean F10.7

estimated value given at monthly intervals, based on the previously mentioned NASA/MSFC linear

regression program model output, and averaged to obtain a +81-day (162-day) estimate of the mean
solar 10.7-cm radio flux centered at the time for which atmospheric values are to be computed. For

dates 81 days or more subsequent to the current date, the 13-month smoothed mean F10.7
estimated value based on the output of the NASA/MSFC linear regression program model should be

used for the +81-day (162-day) mean solar 10.7-cm radio flux value. This 13-month smoothed mean

F10.7 output is updated monthly and is also available upon request to Chief, Electromagnetics and
Environments Branch, NASA/MSFC.

6. Geomagnetic index--ap: The 3-hourly value geomagnetic index, ap, taken 6 hours prior to
the time for which the atmospheric values are to be computed. This parameter is used to compute a

geomagnetic correlation to the exospheric temperature (equation 22 in Jacchia, 1970). As with the
solar radio flux parameters (fl0 and fl0b), this is a real number parameter, and a value of zero may
be used for altitudes below 90 km, a value of 20.3 for design steady-state conditions, and a value of

400 for maximum conditions. When running the GRAM model for the altitude range of the MET

model for dates prior to the current date and the current date, the observed 3-hourly value of ap,

taken 6 hours prior to the time for which the atmospheric values are to be computed, should be used.
For dates subsequent to the current date, the 13-month, smoothed ap estimated value given for the

monthly intervals for which the atmospheric values are to be computed, should be used. The 13-

month, smoothed ap output is updated monthly and, like the previous two values, is available upon

request to Chief, Electromagnetics and Environments Branch, NASA/MSFC.

7-9. Date--mn, ida, iyr: The date for the starting time of the trajectory or profile evaluation in

month/day/two-digit year form, as three integer values. Except in the Jacchia height range (above 90

km), the day of the month has no direct effect on the program calculations. The month is used to
establish which portions of the GUACA and "atmosdat" data bases to read. The year value may

also be used to establish which portion of the GUACA data base is to be read in the case where a

specific year is desired (i.e., the iguayr parameter is set to 2; see item 6 of the eighth line, below).
For years before 1985 or after 1991, individual GUACA years are not available. Above the GUACA

altitudes (above 27 km), the year has no effect on the calculations, except for computing the long-

term climatological trend values for species 03, N20, CH4, CO2, and CO (see section 2.4).

10-12. Greenwich time--ihr0, min0, sec0: The Greenwich mean time (UTC) for the starting

position in hours, minutes, and seconds, as two integer values and a real. Since the time of the day

impacts only the MET model altitude regions, if heights are below 90 km, the starting time serves

merely as a reference parameter for the particular run being done. Greenwich time corresponding to a
local time of 0900 hours should be used for design steady-state MET section conditions, and for

maximum conditions, corresponding to a local time of 1400 hours.
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13. Latitudeincrement---dphi:If a linearprofile is to begeneratedautomatically,this is the
real number latitude increment(in degrees,with northwardpositive) betweensuccessiveprofile
positions.The new latitude would be theold latitudeplus thelatitudeincrement.For a profile with
decreasinglatitude (i.e., on a descendingnode,or going southward),the incrementmust benegative.
Usezeroif a separatetrajectoryfile is to be readin or if a verticalprofile (i.e., changingonly height)
is to be evaluated.

14. Longitude increment---dthet:As with the dphi parameter,if a linear profile is to begen-
eratedautomatically,a real numbervalue(in degrees,with eastwardpositive) for the increment
betweensuccessiveprofile longitude positionsmustbe provided.For a profile progressingwest-
ward,usea negativeincrement.Again, if a separatetrajectoryfile is to be readin, or a vertical pro-
file is to beevaluated,usea valueof zerofor this parameter.

15. Height increment--dhgt:The heightincrease,areal numbervalue in km, for anauto-
matically generatedlinear profile. For profiles generateddownward,usea negativevalue of height
increase.Downward generatedprofiles will beevaluateduntil the height is incrementedto a value
lessthanzeroor until the maximumnumberof positions(item 16, first line, describednext) is
exceeded.

16. Maximum numberof positions--nmax:Themaximumnumber,asan integervalue,of
profile positionsto begeneratedautomatically,including theinitial position.Usezero for this value if
trajectorypositionsareto be readin (i.e., thetrajectoryoption, iopt, item 18,below, hasan input
value greater than zero).

17. Time increment--delt: The time displacementin seconds,asa real value, between
successive,automatically generatedprofile positions.For vertical profiles, this value is often
input aszero, but the parametermaybe usedasa simplecounterwith an input value of one,
which will thenbe incrementedfor eachpositionandprintedout in the timeposition of the output.
For trajectories,the time for eachposition is readin with the positiondata (seethe trajectory file
section,below). The hours,minutes,andsecondsparameters(readin as items 10-12, above)are
updatedaccordingto the new time generatedby the time increment,but only the elapsedtime in
secondsis printed out on the standardformattedoutput.

18. Trajectoryoption--iopt: This integerparametertells the programwhethera trajectoryor
a linear profile is to be evaluated.A valueof zeromeansthat a linearprofile is to begenerated
automaticallyfrom the parameterspreviouslyreadin from this input line, and a zerovalue is required
if a "null" path is designatedfor the third line of this input file. A valuegreaterthanzeromeansthat
trajectoryposition datamust be read in to determinethe positionsat which atmosphericparameters
areto beevaluated.This positivevalue becomestheunit numberto which the trajectory file (who's
pathwas readin from thethird line of this input file) is linked. It shouldnot equalany "reserved"
unit numberof theplatform beingused,andmustnotequalanyof thevalueschosenfor the unit
parameters,iopp, iu0, iup, ius, iuc, andiug throughiug+14 (the iug units requiredto readin the
neededGUACA data).If the input valuefor anyunit numberequalsanother,theprogramwill flag
suchchoicesaserrorswhich mustbecorrectedbeforetheprogramwill run (seesection4.7 for error
messages).

19. Outputoption--iopp: This integer parameter tells the program whether or not to produce

a "special", user-configurable, output file (see the output data files section, below) which is con-

venient as input to other programs (i.e., such as plotting, etc.). As with the trajectory option above, a

value of zero means that no special output is desired, and a positive value becomes the internal unit
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numberto which the specialfile (its pathwasreadin from thefifth line of this input file) is linked.
The choiceof input valuesis governedby thesamerulesasfor the trajectoryoption values,above.

With normal numbersof decimalplaces(andno unnecessaryblank spaces),the above19
itemsshouldfit ontooneline. However,if theyoccupymorethanthe numberof columnsallowedon
oneline (usually80) they may bespreadout onto two lines if theappropriaterules of free-field input
areobserved.Consult the operationor FORTRAN manualsfor your particular systemto determine
the characteristicsof list-directed (free-field) input.

Line 8. The eighth and (usually) final line contains values for various unit numbers and

options controlling functions of the program. The unit numbers are parameters used in read state-
ments in the FORTRAN program to control which file is being read, the scheme being designed to

obtain maximum flexibility in I/O device choices. The line consists of nine positive, list-directed

(free-field) values, the first eight of which are integers with the last being a real value:

1. Screen output unit--iu0: This value is the unit number controlling program output to a

computer screen. It is usually set to 0 or 6 and is one of the "reserved" unit numbers for most plat-
forms.

2. Standard output unit--iup: This value is the unit number for the standard, formatted output
file which is linked to the path previously read in from the fourth line of this input file. It may be set to

6, which is also one of the "reserved" unit numbers (usually designated as the printer) for many

platforms. Any other convenient unit number may also be used for iup. If iup is input as zero, no
standard formatted output is produced. In this case, progress and diagnostic messages (if any) are
routed to the screen unit (iu0).

3. The "atmosdat" file input unit--ius: This value is the unit number for the "atmosdat" data

file which is linked to the path previously read in from the first line of this input file.

4. Concentration file output unit--iuc: This value is the unit number for the concentration file

if one is desired. It is linked to the path previously read in from the sixth line of this input file and

must equal zero if that line was "null". Such would be the case if no concentration output was
desired.

5. GUACA file input unit--iug: This value is the unit number for the first of the 14 consecu-

tive unit numbers required for the GUACA files, and is linked to the path previously read in from the

second line of this input file. If the heights for which calculations are desired are above 27 km, input

of the GUACA data is not required and this value may be set equal to zero.

6. GUACA year option--iguayr: This parameter is a switch with valid values of either 1 or 2.
If the value is 1, the GUACA period of record (por) data is used from the data base; if it is 2, the

actual GUACA year (currently only valid for the 1985-1991 period), based on the iyr parameter's
value (item 9 of line seven, above), is used. If invalid values are input, the program terminates with

the message, "Year out of range to read GUACA data" (see section 4.7).

7. Random output option--iopr: This parameter is also a switch with valid values of either 1

or 2. A value of 1 signals the program to calculate a random perturbation for each output parameter,

add it to the parameter's mean value, and output the result, along with the mean value, for each

desired height, in the standard formatted output file. If the value is 2, random perturbations are not

calculated. If any values other than 1 or 2 are input, the program terminates with the message,

"Error in random option" (see section 4.7).
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8. Initial randomnumber--nrl: This valueis the initial (seed)randomnumber,which is
requiredif thevalueof iopr equals1,andhasa valid rangefrom 1to 9×108.If the input value lies
outsidethis range,the programterminateswith the message,"First randomnumber out of range."
(seesection 4.7).

9. Randomperturbationscale--rpscale:This parameteris a perturbationmagnitudescale,
with valid real valuesof 0.0 to 2.0, that signalsthe programto calculateperturbationswhich are
morequiescent(<1.0), of normalmagnitude(=1.0),or moredisturbed(>1.0). A value of zerosigni-
fies no perturbations,while a valueof two signifiestwice normalperturbationmagnitudes.

Qptional Additional Lines. Additional runs of the same profile/trajectory, with different values

for the random number seed only, may be obtained by adding additional lines to the input file. Each

line must consist of a single value, the new random number seed, which the program reads, then

continues operation, using prior input values for all other parameters, appending the new output to

the previously identified files. This process will continue until either an invalid random number seed

is read or the end of the input data file is reached.

4.5 The Trajectory File

The trajectory file is only required when a trajectory, rather than an automatically determined

profile, is desired. When this is the case, the path to the file must be properly defined on line three of

the input file, and the trajectory option, iopt, must be properly set on line seven of the same input file,
as described above. The file itself may contain an unlimited number of individual list-directed (free-

field) records (i.e., lines) consisting of four real values as shown in figure 4.1: time (real seconds),

height (km), latitude (+90 °, with southern latitudes being negative), and longitude (+360 °, with west

longitudes being negative). Using the values in the first record of the trajectory file, the program

evaluates the atmospheric parameters and continues looping back to read a new trajectory position

until a position below the surface (height < 0.0) or the end of the file is encountered.

0. 1.0947125E+02 3.8193398E+01 -6.5015404E+01

51.1.0796375E+02 3.9470779E+01 -6.1290642E+01

76.1.0599691E+02 4.0037796E+01 -5.9445267E+01

96. 1.0402789E+02 4.0452213E+01 -5.8001106E+01

1476. 3.9935970E+00 3.1976276E+01 -7.8639622E+00

1493. 3.0144496E+00 3.2002960E+01 -7.8682141E+00

1512. 2.0187852E+00 3.2030262E+01 -7.8702340E+00

1532. 9.8250437E-01 3.2058865E+01 -7.8725753E+00
1552.-2.1482366E-03 3.2086098E+01 -7.8748112E+00

Figure 4.1. Trajectory file example

4.6 The Output Data Files

There are three possible output data files. The first, the standard formatted output file, main-

tains the familiar arrangement of the print output of previous GRAM versions, but has now been
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directedto a file to increaseflexibility andto facilitate its transmissionfrom user to useras well as
to a printer.The second,the"special" format output file, is alsosimilar in function to anoutput of
previousversionsof theGRAM, i.e., the optional"nonprint" output,and like it, hasbeendesigned
primarily for useby otherprograms.Its easeof modificationhasbeengreatly improvedin the
GRAM-95, however.The third, the speciesconcentrationoutput file, is completelynew in the
GRAM-95 andprovidesuserswith concentrationinformationfor 12significant atmosphericcon-
stituents.Like the specialformat output file, the speciesconcentrationoutput file is also optional.

The Standard Formatted Output File. The format of the standard output file (see example in

appendix B) has been redesigned to be more readily readable on the normal computer screen (i.e., 80
columns) rather than on a normal printer (i.e., 132 columns), and with judicious "folding" of the out-

put data fields, nearly all previous information has been maintained. The typical file size will gener-

ally consume 100 kb or less of disk space. Some less-useful output was pruned from heading infor-

mation printed out in previous GRAM versions, but information on water vapor concentrations has

been added. As in previous versions, the heading information contains a listing of the principal input
data values and the Julian date, which is required by the Jacchia section of the program and is calcu-

lated internally by the program. Additionally, some comments on moisture have been added to the

heading and some slight modifications were made to the column labels. A sample of a complete

standard formatted output file is included in appendix B.

Positions and times, as generated by the automatic linear profile feature, or as input by the

trajectory input data, are listed on the output, along with the associated calculated values of the
atmospheric variables, following the column labels. Within the program, the input time in hours,
minutes, and seconds are updated in that form, however only a continuously increasing time in

seconds is output for each position. Thus, as has been previously mentioned, the time parameter
could be used as a counter instead of as a timer, or the format could be changed in the program to

output the time in any other desired form. All longitudes are converted to the -180 to +180" range

before being output, and if a latitude greater than 90* in absolute magnitude is generated (or input),
the transformation of equations (4.4) and (4.5) is made.

The monthly mean values of pressure, density, temperature and wind components consist of

either (fig. 1.1):

1. Values calculated from the GUACA data base input if the height is 20 km or below

o

3_

The sum of middle atmosphere zonal-mean plus stationary perturbation values if the

height is between 27 and 90 km

A value faired between the GUACA data and zonal-mean plus stationary perturbations if

the height is between 20 and 27 km

4. Jacchia (MET) model values if the height is above 120 km

5. Faired values between middle atmosphere and MET model values if the height is

between 90 and 120 kin.

The percent deviations from the 1976 U.S. Standard Atmosphere, on the "M-76" line, are

evaluated by using standard atmosphere values computed by the subroutine stdatm, found in the

gramsubs.f file. The percent deviations are evaluated by the relations IO0(T-Ts)ITs, lO0(p--ps)/ps,

arid lO0(p-ps)lps, where the subscript s refers to the standard atmosphere values. This subroutine

accurately reproduces the tabulated 1976 U.S. Standard Atmosphere values to within an accuracy of
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better than0.2 percentabove90 km andevenmoreaccuratelyin the height regionbelow 90km,
wherethe molecularweight is constant.Sincethe 1976U.S. StandardAtmosphereis not defined
above1,000km, the percentdeviationsoutput for heightsabove1,000km arezero.Becausethe
MET model is sensitiveto solaractivity conditions,largedeviationsfrom U.S. StandardAtmosphere
valuescanbeproducedin this height rangefor certainrangesof F10.7andap values.

The parameter values output on the "Tot." line are the monthly mean values, as defined

above, plus the random perturbations. These mean-plus-perturbation values represent those which

would be typical "instantaneous" evaluations of the pressure, density, temperature, and winds. The

percent deviations from the U.S. Standard Atmosphere, on the "T-76" line, are computed in the

same way as for the percent deviations of the monthly mean values from the standard atmosphere.

Values on the "H20" line are the mean water vapor values, expressed as vapor pressure

(N/m2), vapor density (kg/m3), dewpoint temperature (K), and relative humidity (percent). Mean

water vapor values are computed from the GUACA, LaRC, MAP, or AFGL data, according to alti-
tude. Fairing is also used for a smooth transition between these data sources (fig. 1.2). Values on

the "sigH" line are standard deviations in water vapor, in terms of the same units as the mean

water vapor values.

The values on the "ranS", "ranL", and "ranT" lines are the small-scale, large-scale, and

total random perturbations, evaluated at the output time and place. The values on the "sigS",

"sigL", and "sigT" lines are the standard deviations of the small-scale, large-scale, and total ran-

dom components at the output time and place. According to the gaussian distribution, on which the

random perturbations are based, the perturbation values should be within the range +o- 68 percent of
the time and outside the range +o- 32 percent of the time. Similarly, the perturbation values should

be within the range +2o" 95 percent of the time and outside the range -l-2o" 5 percent of the time. The

values of the foregoing parameters are derived from the new variable-scale perturbation model,
discussed in section 2.6.

The "Soecial" Format Output File. The "special" output file is optional, controlled by the

input value of the iopp parameter switch (the 19th and last item on the seventh line of the input file)

and the path name (input via the nprpath item of the fifth line) as described above. If chosen for out-

put, it typically requires less than 10 kb of disk space. As incorporated in the "official" distributed

code, this output file is configured at two separate locations. The file's header definition may be
found in the init subroutine of the initial.f file, in the section near the label 113, while the file's

parameter output definition may be found in the atmod subroutine of the models.f file, in the section

near the label 9000. Output are the mn, ida, iyr, ihr, h, phi, thet, pgh, dgh, tgh, ugh, vgh, and wgh
parameters with formatting of 412, F6.2, Ix, F6.2, F7.2, Ix, lp, 2(E9.3, Ix), 0p, 3(F7.1,1x), F7.4 as

depicted in figure 4.2. The code at both of these locations may be modified to fit the requirements of

the user, but of course the header section in the init subroutine, if desired at all, should correspond
with the data output section in the atmod subroutine.
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GRAM-95 - f10.7= 230.00 fl0.7bar= 230.00 ap= 20.30
modayrhhheight lat long pressure density temp u-comp v-comp w-comp

(km) (deg) (deg) (Nt/m**2) (kg/m**3) (degK) (m/s) (m/s) (m/s)
(n+s-) (w-e+) ......... unperturbed(monthly mean)............

11930 140.00 28.45 -80.53 9.481E--04 4.305E-09 670.4 -9.8 -27.7 -0.0042
11930 138.00 28.45 -80.53 1.038E-03 4.929E-09 643.7-16.2 -25.3 -0.0045
1 1930 136.00 28.45 -80.53 1.142E-03 5.688E-09 616.3-22.9 -23.0 -0.0048
1 1930 134.00 28.45 -80.53 1.262E-03 6.619E-09 588.2-29.8 -20.7 -0.0050

1 1930 6.00 28.45 -80.53 4.873E+04 6.525E-01 260.1 20.6 2.8 0.0012
1 1930 4.00 28.45 -80.53 6.289E+04 8.048E-01 272.0 14.0 2.0 0.0013
11930 2.00 28.45 -80.53 8.037E+04 9.923E-01 281.6 7.0 1.2 0.0018
1 1930 0.00 28.45 -80.53 1.021E+05 1.212E+00 291.5 0.8 -0.6 0.0000

Figure 4.2. "Special" format output file example

The St_ecies Concentration Output File. The species concentration output file (see example in

appendix B) i-s also optional, and is controlled similar to the special format output file by the value of

an input parameter, iuc, which is the fourth item on the eighth line of the input file, and the pathname
parameter, conpath, input via the sixth line of the input file. The file typically requires a little more

than half the disk space of the standard output file, i.e., about 50 kb or less. The file's header defini-

tion may be found in the init subroutine of the initial.f file, in the section near the labels 9091 and
9013, while the output definition may be found in the atmod subroutine of the models.f file, near the

label 910. Output are the h, phi, thet, ppmh2o, h2ond, ppmo3, o3nd, ppmn2o, n2ond, ppmco, cond, elt,

ppmch4, ch4nd, ppmco2, co2nd, ppmn2, n2nd, ppmo2, o2nd, ppmo, ond, ppmar, amd, ppmhe, hend,

ppmh, and hnd parameters with formatting of F7.2, F8.3, F9.3, lp, E11.3, El0.3, 2E10.3, 24x, E11.3,
El0.3, 2E10.3, 0p, F8.1, 16x, lp, E11.3, El0.3, 2E10.3, 24x, E11.3, El0.3, 2E10.3, 24x, E11.3, El0.3,

2E10.3, 24x, E11.3, El0.3, and 2E10.3 as shown in appendix B.

Selection of Special Output Parameters. As a further aid to the user, the following tables (fig.

4.3) list the standard variables available for output (e.g., in a modified "special output" file). The

tables are also given in the code itself, in the atmod subroutine of the models.f file, beginning near
label 920:

Position and Time parameters

h- Height (km)

phi- Latitude (degrees)

thet- Longitude (degrees), East(+)West(-)

elt- Elapsed Time (s)

50



Thermodynamic. wind and moisture parameters (on standard output)
Pressure Density/ Temp./ E- W N - S
/Vap. Pr Vap. Den. Dew Pt. wind wind

Vert.

wind(m/s)

Mean pgh dgh tgh ugh vgh wgh
Mean-76 pghp dghp tghp n/a n/a n/a
Perturbed

small-scale prhs drhs trhs urhs vrhs n/a
Stand. Dev.

small-scale sphs sdhs sths suhs svhs n/a
Perturbed

large-scale prhl drhl trhl urhl vflal n/a
Stand. Dev.

large-scale sphl sdhl sthl suhl svhl n/a
Perturbed

Total Pert. prh drh lrh utla vrh wrh
Stand. Dev.

Total Pert. sph sdh sth sub svh swh
Mean plus

Perturb. ph dh th uh vh wh
Total-76 php dhp thp n/a n/a n/a
Mean H20 eofT rhov tdgh n/a n/a rhp

Std. Dev. H20 seofr srhov stdgh n/a n/a srhp

Species concentration parameters (on species output)

CO CO2 QZ O Ar He n
Concen- ppmh2o ppmn2o ppmch4 ppnm2 ppmo ppmhe

tration ppmo3 ppmco ppmco2 ppmo2 ppmar ppmh
..................................................................................................................................

Number h2ond n2ond ch4nd n2nd ond bend
Density 03nd cond co2nd o2nd arnd hnd

Figure 4.3. Standard variables available for output.

4.7 Program Requirements and Diagnostics

Requirements. In order to use the GRAM-95 program without modification, the user must

be operating on the equivalent of an SGI computer running the IRIX operating system with sufficient

disk space and an attached CD-ROM drive. The eight FORTRAN code files (described in section
4.8) must be acquired, along with the GUACA data base on CD-ROM and the atmosdat file

(described in sections 4.2 and 4.3, respectively), the equivalent of an input.dat file (described in sec-

tion 4.4), and a trajectory file (described in section 4.5) if desired. Then, when the GUACA data base
is accessed via the CD-ROM form, the GRAM-95 program requires approximately 20 Mb to

prepare the FORTRAN code for execution and then activate the resulting executable code in its
native Unix environment.

As an aid to the user, the following list gives some approximate disk space or memory

requirements:
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FORTRAN code files

Compiled code _e

(e.g., the gram95.x file)

Object code files
(interim files during compilation)

atmosdat file

Input and output files
Miscellaneous files

432 kb

8.3 Mb

8.5 Mb

2.5 Mb

100 kb

- variable

19.8+ Mb

If even 1 month of the GUACA data base should be stored on disk rather than kept on CD-

ROM, approximately 3.5 Mb of additional disk space would be required for the necessary 14 files of
each month, a total GUACA requirement of nearly 42 additional megabytes of disk space if all 12

months are loaded onto the disk. Consequently, the recommended mode of operation is via CD-

ROM if possible.

If problems are encountered when trying to read the GUACA data for the first time on your

system, there are nine parameters, whose values can be changed within the main "gram95.f" code,

that may allow the data to be read without further code changes. The nine parameters are "iswap,"

"iblwd," "irlbw," "dirsep," "endsep," "termchar," "nhdr," "sysform," and "scrstat." Parameter

iswap is a switch to control byte-swapping in the GUACA data, which may be required for certain

platforms, e.g., swapping is required for SGI machines. To prevent swapping (e.g., on a VAX), set

iswap = 0. Some platforms allow the byte swapping to be done in an external (system-level)

allocate or assign statement. For example, on a Cray (UNICOS) system, the statement:

"assign -F null -N vms -a filepathname fort.uu"

(in place of the FORTRAN "open" statement) assigns FORTRAN unit "uu" as a "pure" (binary)

file and performs the byte reversal. Parameter iblwd is the block length, in 4-byte words, if the

GUACA files have to be preread into a scratch file (iblwd = 0 means no prereading necessary; On a
VAX use iblwd = 128). Parameter irlbw is 4 if unformatted file record lengths are specified in bytes

(e.g., Sun, RS/6000); irlbw is 1 if unformatted file record lengths are specified in 4-byte words (e.g.,

SGI, VAX). Some systems allow the record length specifier to be controlled by a compiler switch.

For example, on an SGI, the compiler option "oldrl" causes recl to be in bytes instead of the SGI

default of 4-byte words. The combination of values iblwd = 0 and irlbw 0 triggers the program to

try to read the GUACA data as a sequential file (nonzero values use direct access file reads). The

parameter nhdr may need to be either 44 or 45 if the sequential mode is used. Parameters dirsep,

endsep, and termchar are interior separator, ending separator, and terminating characters in file

pathname structures. Examples of the values of dirsep, endsep, and termchar on several system

types are as follows:

_ termchar file t)ath structure

UNIX '/' '/' "

DOS 'V 5' ' '

VAX/VMS '' ']' ' '
iBM/JCL " '(' ')'

maindir/subdir/filename.ext

maindirksubdirWdename,ext

[maindir.subdir] filename.ext

maindir.subdir(filename)

These parameters are
the GUACA data file

mtmp01.dat with the

used to build the file pathnames for the GUACA data files. Thus, to specify

mtmp01.dat, the full pathname may be built as ICDROMI2p5deglporlOll

Unix separators, as [CDROM.2p5deg.por.01]mtmp01.dat on a VAX system,
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with themain directory (/CDROM/2p5deg)readin from the input datafile andthe subdirectory
structure(por/01) suppliedautomaticallyby theprogram(seeappendicesA andB). Parameter
sysform (usually 'system' or 'unformatted') is theform for openinga directaccessbinary file.
Parameterscrstatis the status(usually 'scratch' or 'delete') for a temporaryfile when using the
prereadoption.

_. During thecourseof a run, variousprogressmessagesarewritten to the
screen.If major problems arise in the progress of a run, a diagnostic message will be written to the
screen, and sometimes to the standard formatted output file as well. Some error conditions are fatal,

with execution being terminated after the diagnostic message is written. A list of the diagnostic and

progress messages is given in appendix C.

4.8 Description of Program Files and Subroutines

The GRAM-95 program code is separated into several files, some of which group functionally

related subroutines together. However, one file, "gram95.f", consists of a single unit and is the

"driver" or "main" portion of the code. It was designed to be easily replaced, to help the user incor-

porate the remainder of the code into other programs as a coherent set of files, with minimal modifi-
cation (see appendix E).

The Files. The eight files (including the driver file) which hold the GRAM-95 FORTRAN
program code, require approximately 432 kb of disk space and are named:

gram95.f - The driver portion of the code, which has no included subroutines

but calls subroutines init, timestep, and randinit.

gramsubs.f Includes function correl, and subroutines caljday, corlat, fair, gterp,

intr25, intrw, inter2, interw, interz, intruv, pdtuv, pertrb, rterp,
rtran, stdatm, and wind.

guaca.f - Includes functions gascon and ztoH, and subroutines guacard,

guafix, guainit, guaintrp, guamod, and zinterp.

initial.f - Includes function valreal, Block Data Initval, and subroutines

chekunit, init, mapinit, randinit, scalinit, setup, shift2, and shift4.

metprog.f - Includes functions molwt and temp, and subroutines fair5, gauss,

j70, jac, jacch, slv, slvh, tinf, and tme.

models.f - Includes function mixrat, and subroutines atmod, jacmod, mapmod,

rig, and timestep.

random.f - Includes function ppnd, and subroutines rcarin and rcarry.

speconc.f - Includes functions dedt, d2edt2, tdbuck, valint, valz, and wexler,

and subroutines afglconc, concinit, concvals, larcwat and mapconc.

Additionally, a subroutine (gramtraj.f), with dummy main driver, is also provided to facilitate use of

GRAM-95 as a subroutine in user-supplied driver programs (see appendix E).
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The Subroutines. The GRAM-95 code consists of the main driver, 51 subroutines, 14

functions, and 1 named Block Data routine. Appendix D gives an alphabetical listing of the names of
each of the subroutines and functions, the file in which it is found, the subprogram from which it is

called, and briefly describes what the subroutine or function does. In addition, fairly extensive

comments have been provided in the code (sometimes including references for the sources of some of

the algorithms). Also, since many parameter values are passed between subroutines via common
blocks, appendix D gives a list of the common block names and the subroutines in which each is
used.

4.9 Running GRAM-95

Before running GRAM-95, all files must be available in the proper configuration, and the

source code must have been compiled and linked in some manner. On IBM 3090 platforms, this is

accomplished through use of the Job Control Language (JCL), but on Unix platforms, it is through a

more direct and perhaps intuitive use of simple commands coupling the files themselves. For

instance, to compile the GRAM-95 code in its native SGI IRIX environment, the following relatively

simple command string is issued at a terminal:

f77 -o gram95.x gram95.f gramsubs.f guaca.f initial.f metprog.f \

models.f random.f speconc.f

This results in the executable file, gram95.x, and an intermediate "object" file for every FORTRAN

file (i.e., the ".f" files, above), such as gram95.o, gramsubs.o, etc., which are no longer needed once
the executable is obtained. Furthermore, these object files take up about 8.5 Mb of disk space in

addition to the more than 8 Mb required by the executable. Thus, they are usually deleted by a com-

mand string such as:

rm *.o

Then, to make the executable file "globally" accessible, a command might be given such as:

chmod go+x gram95.x
i_ _=ii: : i ....

All three of these command strings may be combined in a single executable script file, similar to the

example below, which would automatically accomplish the tasks when invoked.

After the executable has been formed, the data bases and other input files must be properly

linked. In the SGI IRIX environment, when the user either is running in the directory where the exe-

cutable is located or has that directory listed in the "path" environmental variable, the simple com-

mand String.- : =

gram95.x < input.dat

may suffice (refer to section 4.4 for a description of the "input.dat" file). Again, however, an exe-

cutable script file would enhance the run sequence. For example:
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# Executable"rungram" runs the GRAM-95 program.
# Usage: "rungram input-file-pathname"
# If no input-file-pathnameis given,the defaultis a
# file named"input.dat" in thecurrentdirectory.
#
if ( $#argv< 1) then

/usrl/people/jeffrwr/Gram95/gram95.x < input.dat
exit 0

endif

lusrllpeopleljeffrwr/Gram951gram95.x < $1

would run the program using the links established in the "input.dat" file. In the example input file
in appendix B, for example, links are made to the atmosdat file and the GUACA files on CD-ROM,

and three output files are designated. A run is made using the initializing values on lines 7 and 8,

with no trajectory file being invoked in the appendix B example (note the "null" input on line 3 and

the next-to-last variable on line 7). It should be noted in passing that the above depicted "run

script" was developed in a c-shell environment of the SGI platform. To use it in other shells, even

if the subdirectory structure was valid, the user must enter some sequence of keystrokes such as:
"csh ./rungram" from the subdirectory where the run script is located.
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APPENDIX A

Global Upper Air Climatic Atlas (GUACA) Data

(Adapted and expanded from the help file on the GUACA CD's)

GUACA Background

The Global Upper Air Climatic Atlas Version 1.0 (referred to as GUACA), volumes I and II,

was produced at the Federal Climate Complex, Asheville, NC. Two organizations cooperated in

GUACA's development:

1. Naval Oceanography Command Detachment (NAVOCEANCOM DET), a field activity of

the Commander, Naval Oceanography Command.

2. National Climatic Data Center (NCDC), a component of the National Oceanic and

Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information

Service (NESDIS).

GUACA is a U.S. Navy-led effort produced and funded under the authority of the Commander,

Naval Oceanography Command (COMNAVOCEANCOM) and partially supported by funding under

NOAA's Earth System Data and Information Management Program.

Data Sources

GUACA is based upon twice-daily (00 and 12Z) upper-air analyses provided by the

European Centre for Medium-Range Weather Forecasts (ECMWF) for the 1980 to 1991 period.

Data were provided for a global 2.5 ° grid (10,512 grid points) and were summarized by year-month

and period of record-month. The observational data are used in the model initialization step for the

forecasts produced by ECMWF. As pan of the model initialization process, the data are subjected to

quality control and the observations at irregularly spaced locations are interpolated to the regular

2.5 ° grid spacing.

The ECMWF, located in Reading, England, is funded and staffed by member European

countries. Primarily responsible for forecast support for the European countries, ECMWF's data

collection and assimilation system utilizes global data. A variety of data sources are used in order to

produce the most accurate representation of the atmosphere at a given observation time.

These data sources include:

1. Radiosondes--balloon borne instruments released by ground level observers (both land

and sea). The instrument package provides temperature, moisture, wind and height data as the

balloon rises through the atmosphere. Coverage is sparse over the global ocean environment.

2. Aircraft--reports of flight level wind, temperature and moisture.

3. Satellites--atmospheric profiles of specific elements and estimates of wind data from
cloud motion.
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The ECMWF GUACA data provides monthly average gridded data for the following levels

and meteorological elements, for each year noted and for the 1980 to 1991 period of record:

Surface or Sea Level

Surface Air Temperature

Surface Dew-Point Temperature

Surface U and V Wind Components
Sea Level Pressure

1985-1991

1985-1991

1985-1991

1985-1991

Pressure Levels 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, and 30 millibars

Air Temperature

Dew-Point Temperature (to 300 mbar only)

Geopotential Height

U and V Wind Components

1980-1991

1980-1991

1980-1991

1980-1991

Pressure Level 10 mbar

Air Temperature

Geopotential Height

U and V Wind Components

1985-1991

1985-1991

1985-1991

An approximate height above sea level for each pressure level is

1,000 millibars 130 meters (400 feet)
850 millibars 1,500 meters (5,000 feet)

700 millibars 3,000 meters (10,000 feet)

500 millibars 5,500 meters (18,000 feet)

400 millibars 7,000 meters (24,000 feet)
30() millibars 9,00Ometers (30,000 feet)

250 millibars 10,500 meters (34,000 feet)

200 millibars 12,000 meters (40,000 feet)

150 millibars 13,500 meters (44,000 feet)

100 millibars 16,000 meters (52,000 feet)

70 millibars 18,500 meters (60,000 feet)

50 millibars 21,000 meters (69,000 feet)

30 millibars 24,000 meters (78,000 feet)

10 millibars 31,000 meters (101,000 feet)

Dew-point temperature was calculated by NCDC from mixing ratio (to April i982) and from

relative humidity (from April 1982 to end of period-of-record). In addition to the above elements,
atmospheric density for the surface to 10 mbar pressure level was calculated from pressure and

temperature data. Also, vector and scalar wind and wind rose data were calculated from the u and v

wind components (but are not used in GRAM).

It should be noted that the 70 mbar level was missing in the GUACA 1980 data for April.

This adversely affected the period-of-record density values for April at 70 mbar. A routine has been
included in GRAM to correct these period-of-record values. Because of the change in number of

levels and meteorological elements available after 1985, GRAM allows only the individual years

1985 to 1991 and the period-of-record data to be used.
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The dataanalysis/forecastsystemusedby ECMWF, aswell asthe model initialization
procedures,undergoescontinual modificationto bettermodel theglobal atmosphere.The grid point
analysesprovided are not static but areconsideredevolutionary.The usershouldnote that current
year-monthgridded dataareconsideredto moreaccuratelyrepresentthe real atmosphere.A number
of major andminor changeshavebeenintroducedsince 1980.

Datesof major changesandthe effecton thegriddeddataare:

1. September1982--temperatureincreasein the tropical middle troposphere---especiallyat
500mbar.

2. May 1985--tropical temperatureincreaseat 700 mbar,and decreaseat 850 mbar.
Stratospherictemperatureincrease,with slight cooling at 300 mbar.Warming in Northern
Hemisphericpolar region between850 and400 mbar.Moisture increaseat 850 mbar, with decrease
above850 mbar. Improvementsin tropical wind structure.

3. March 1986--significant moisteningof theuppertroposphere.

4. May 1986--tropical temperaturesneartropopausedecreased.

5. May 1989--moisteningin upper troposphere(300mbar).

An excellentoverview of theECMWF systemand implementedchangescan be found in
NCAR TechnicalNote373+STR,datedJune1992.

Accessing the GUACA CD Data

GUACA is a two CD-ROM disk product with year-month statistics for 1980 to 1987 on

volume I and year-month statistics for 1985 to 1991 on volume II. Data for 1985-1987 plus the

period-of-record statistics (1980 to 1991) are placed on both disks, to fill the disks to near capacity

and to mitigate the need for "disk-swapping" if only a single disk CD-ROM reader is available to
the user.

Since GRAM does not allow use of the individual years 1980 to 1984, only the GUACA CD

volume II is of major interest to GRAM users. A PC DOS-based graphical display package is placed
on both disks; therefore they can be used as stand-alone products.

GRAM allows the GUACA data to be read in directly from the CD if a CD-ROM reader is

available on the user's system. If the GUACA data must be read in from the CD on a PC and ported

to the system on which GRAM resides, then the following minimum PC system is required:

- IBM 286, 386, 486 or compatible PC

- 470k or more of free system memory (RAM)

- MS-DOS version 3.21, or higher
- Either a hard drive or floppy drive for temporary file creation
- A CD-ROM drive.
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In addition, if theGUACA graphicaldisplay is to be used (not required for GRAM), the following is

also needed:

- EGA or VGA graphics card for extended color graphics with memory

- Mouse (optional); must be Microsoft TM compatible.

i

!

!

GUACA Data Formats

Main GUACA directory: /CDROM/2p5deg

Year subdirectories: 1985 1986 1987 1988 1989 1989 1990

Monthly subdirectories: 01 02 03 04 05 06 07 08 09 10 11

Files in each monthly subdirectory:

File Name

Parameter Units Mean Values

1991 por

12

File Name

Std. Devs.

Number

of Levels

Size

(bytes)

Density g/m 3

Dewpoint Temperature °C

Geopotential Height m

Sea Level Pressure mbar

Temperature °C

Eastward Wind Comp. m/s

Northward Wind Comp. m/s

mdenxx.dat

mdwpxx.dat

mhgtxx.dat

mslpxx.dat

mtmpxx.dat

muwdxx.dat

mvwdxx.dat

sdenxx.dat

sdwpxx.dat

shgtxx.dat

sslpxx.dat

stmpxx.dat

suwdxx.dat

svwdxx.dat

where xx = month (same as name of monthly subdirectory).

Example file pathname for January, period-of-record mean density:

/CDROM/2p5 deg/por/01/mden01.dat

15

7

14

1

15

15

15

315,660

147,404

294,628

21,212

315,660

315,660

315,660

Each pressure level has data values for 144 longitudes (0", 2.5 ° E, 5.0 ° E ..... 2.5* W) by 73
latitudes (-90 °, -87.5 °, .... +90*). Each data value is a 2-byte integer. Each level of data values is

preceeded by a 4-byte integer offset value and a 4-byte real scale value. All data values are

converted to physical units by the transform

physical-value = (data-value x scale + offset)/100.

Each file begins with 180 bytes of header (in ASCII) that describes the parameter and units, and the

pressure levels in the file. The amount of data in each pressure level (in bytes) is thus

bytes/level = (2x4)+(144x73x2) = 21,032,

and the size of each file (in bytes) is

file-size = 180+(21,032 x number-of-levels).
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Thereareno embeddedend-of-record(EOR) marksin the file.

If FORTRAN files canbeopenedasform='binary' (e.g.,Microsoft FORTRAN) or
form='system' (SGI FORTRAN) (i.e., assumingnoembeddedEORsor other file management
bytes),theneachfile could be readfrom the GUACA unit (iug) with the statements

&
100

Re ad (iug) (header(i), i= 1,45)
Do 100 k = 1,numlevs

Read(iug,end=900)ioffset(k),scale(k),((input(i,j,k),

i=1,144),j=1,73)
Continue

(assuming the header array has been declared as Character*4, and that the input array has a number

of levels = numlevs). This is a type of sequential access (a version of which is one of the read

options in the guacard subroutine). The GUACA reading routine in GRAM uses the more standard,

form='unformatted' for the file open statements. By declaring the GUACA files as direct access,

with fixed record size of one (4-byte) word each, the GUACA read routine provided in GRAM can

still read the files directly on some platforms (e.g., SGI UNIX). For systems that must treat the files

as some other fixed block (record) size (e.g., 512-byte blocks on a VAX), the option is provided to
preread the GUACA files and write them out to direct access, internal files that can be read in

records, each consisting of one 4-byte word. This method loses some in run-time efficiency but

provides for more intersystem portability (i.e., for those systems that do not allow the form='binary'

or form='system' file opens). Although the more efficient reading process, noted above, may take
only about half the time, the read routine used in GRAM takes only a few seconds to read each file

on an SGI UNIX platform. For details on the various read options in the guacard subroutine, see
section 4.7.

Credits

The following people contributed to the GUACA project:

NAVAL OCEANOGRAPHY COMMAND DETACHMENT

Program Direction: LCDR Dennis B. Ruth, USN

Program Concepts: Mr. Brian L. Wallace

NATIONAL CLIMATIC DATA CENTER

Programming: Mr. Claude N. Williams, Jr.

Mr. Eric B. Gadberry

Technical Support: Mr. Michael J. Changery

Problems or Questions

The information in GUACA is presented in a way intended to ease access and understanding.

Unlike less-sophisticated data access software, there may be many ways to arrive at a given piece

of information. The user may, therefore, happen upon a problem not corrected during development.
Please do not hesitate to contact the following if this happens to you.
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If problems or questions from military users or DOD contractors arise, they should be

forwarded to:

Fleet Numerical Meteorology and Oceanography Command Detachment
Room 563

151 Patton Avenue

Asheville, NC 28801-5014

Phone: (704) 271-4232

Technical or data-specific questions from civilian users should be forwarded to:

National Climatic Data Center

Climate Services Division

Room 468

151 Patton Avenue

Asheville, NC 28801-5001

Phone: (704) 271-4702

To purchase a copy of GUACA contact:

National Climatic Data Center

Climate Services Division

Room 468

151 Patton Avenue

Asheville, NC 28801-5001

Phone: (704) 271-4800

Fax: (704) 271-4876
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APPENDIX B

Sample Input and Output of GRAM-95

GRAM 95 reads the following input data:

Lines 1-6: Path names for input/output files (up to 64 characters):

Line 1: atmpath = path name for atmospheric data file ("atmosdat")

Line 2: guapath = path name for GUACA input files (e.g./CDROM/2p5deg)

Line 3: trapath = path name for trajectory input file ("null" and set iopt = 0 if none)

Line 4: prtpath = path name for standard formatted output file ("null" and set iup = 0 if none)

Line 5: nprpath = path name for the "special" format output file ("null" and set iopp = 0 if none)

Line 6: conpath = path name for species concentration output file ("null" and set iuc = 0 if none)

Lines 7-8: Data lines, in list-directed (free field) format:

Line 7 contains:

h l = initial height (km)

phil = initial latitude (deg, N positive)

thetl = initial longitude (deg, East positive)
fl0 = 10.7 cm flux

fl0b = mean 10.7 cm flux

ap = geomagnetic index

mn, ida, iyr = month, day, year (2-digit)
ihr0, min0, sec0 = UTC (Greenwich) hour, minutes, seconds

dphi = latitude increment (deg, Northward positive)

dthet = longitude increment (deg, Eastward positive)

dh = height increment (km, upward positive)

nmax = maximum number of positions (including initial position)

to be computed (0 means read trajectory input)

delt = time increment between positions (real seconds)

iopt = trajectory option (O=no trajectory data; otherwise unit
number)

iopp = "special" output option (O=no "special" output;

otherwise unit number of "special" output file)

Line 8 contains:

iu0 = unit number for screen output

iup = unit number of standard formatted output file (0 for none)
ius = unit number for atmosdat data

iuc = unit for concentrations output (0 for none)

iug = unit number for the 1st of the 14 consecutive unit numbers required for the GUACA input

data, 0-27 km (0 for no GUACA data)

iguayr = 1 to use GUACA period of record,

2 to use actual GUACA year (1985-1991), based on

1st-line input value iyr (input as 2-digit year)

iopr = random output option (1 = random output, 2 = none)

nrl = starting random number (1 to _xl0 s)

rpscale = random perturbation scale, nominal = 1.0
maximum = 2.0, minimum = 0.0
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Optional Lines 9 ...: Additional random number seeds for re-initializing

the same profile or trajectory.

Sample Input File:

atmosdat

/CDROM]2p5deg
null

output.dat

specout.dat

species.dat
140. 28.45 -80.53 230. 230. 20.3 1 1 95 0 0 0.0 0. 0. -2. 71 1.0 0 21

063 422 1 1 1234 1.0

This assumes that the "atmosdat" file resides in the current directory. A more complete path

name may be given if it resides in another directory. The root directory for the CD ROM drive is
assumed, for this example, to be/CDROM. From the initial pathname given, GRAM builds the rest

of the required pathname, according to the directory structure on the GUACA CD [e.g.,
/CDROM/2p5deg/pod01/xxxx01.dat, since the input specifies period-of-record and January]. For

input GUACA pathnames ending in a directory separator, this character is ignored from the input and

supplied by the program. For example, on a VAX, an initial GUACA pathname of [CDROM.2pSdeg]

will be built as pathnames [CDROM.2p5deg.por.01]xxxx01.dat (see section 4.7). The output files
will reside in the current directory in this example. A more complete path name may be specified to

route the output files to some other directory. The example input shown here produces a vertical

profile for the location of Kennedy Spaceflight Center, analogous to the reference output in Appendix

B of the GRAM-90 report (Justus et al., 1991).

The following two listings give the standard formatted output file "output.dat" in this

example, and the optional species concentration file, "species.dat" in this example. This input and

output is for an automatically-generated profile. If values along a set of pre-computed trajectory

positions are desired, then a trajectory input file is also required, an example of which is given in
section 4.5.

Standard Formatted Output Produced by the Input File Above:

****** Global Reference Atmospheric Model - 1995 (GRAM-95) ******

MM/DD/YY = i/ 1/95 HH:MM:SS(UTC) = 0: 0: 0.0

FI0.7 = 230.00 Mean FI0.7 = 230.00

GUACA path = /CDROM/2p5deg/por/Ol/ .... _:

Max of 71 positions, generated automatically.

Random Option = 1 ist Random No. = 1234

Julian Day = 2449918.500 -

ap Index = 20.30

Random Scale Factor = 1.00

Mean-76 and Total-76 are percent deviations from 1976 US Standard Atmosphere.

Other deviations in percent are with respect to mean values. RH is relative

humidity in percent. Zeroes for H20 indicate no estimate available.

Height

(km) Lati- Long.

Time tude [E+W-]

(sec) (deg) (deg)

140.00 28.450 -80.530

Tempera- Vert.

Pressure Density/ ture/ E-W N-S Wind

/Vap. Pr. Vap.Dens. Dewpt. Wind Wind (m/s)

(Nt/m**2) (kg/m**3) (K) (m/s) (m/s) RH(%)

9.480E-04 4.305E-09 670.3 -9.8 -27.7 -0.004 Mean

31.6% 12.4% 19.8% M-76
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0.0

138.00

1.0

136.00

2.0

28.450

28.450

-80.530

-80.530

-4.3%

2.9%

15.2%

12.2%

10.9%

12.5%

1.052E-03

46.0%

0. 000E+00

0. 000E+00

1. 038E-03

30.2%

-4.7%

3.0%

15.1%

12.8%

10.4%

13.2%

I. 146E-03

43.7%

0. 000E+00

0. 000E+00

I. 142E-03

28.8%

-3.4%

3.2%

16.4%

13.5%

13.1%

13.9%

1. 291E-03

45.6%

0. 000E+00

0. 000E+00

-2.7% -1.6% 42.3

6.2% 12.6% 45.0

3.2% 12.0% 70.9

3.7% 7.4% 52.3

0.5% 10.4% 113.2

7.2% 14.6% 69.0

4.327E-09 740.2 103.3

12.9% 32.3%

0.000E+00 0.0

0.000E+00 0.0

4.929E-09 643.6 -16.2

12.1% 18.6%

0.3% -5.1% 29.6

6.2% 13.2% 44.5

3.7% 11.4% 74.9

3.8% 7.9% 52.2

4.1% 6.3% 104.5

7.3% 15.4% 68.6

5.130E-09 684.2 88.3

16.7% 26.0%

0.000E+00 0.0

0.000E+00 0.0

-19 8

45 0

-21 5

52 3

-41 3

69 0

-69.0

-0.96

8.33

-0.96

0.0%

0.0%

ranS

sigS

ranL

sigL

ranT

sigT

Tot,

T-76

H20

sigh

-25.3

-23.9

45.8

-29.6

53.8

-53.5

70.6

-78.8

-0.005

3.96

8.16

3.96

0.0%

0.0%

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigH

5.688E-09 616.2 -22.9 -23.0 -0.005 Mean

12.1% 17.3% M-76

1.4% -4.8% 35.8 -0.9 ranS

6.3% 13.7% 44.0 46.7 sigS

3.7% 12.7% 80.1 -35.5 ranL

3.9% 8.4% 52.0 55.2 sigL

5.1% 7.9% 115.9 -36.3 6.01 ranT

7.3% 16.1% 68.1 72.3 7.99 sigT

5.979E-09 665.2 93.0 -59.3 6.01 Tot.

17.8% 26.6% T-76

0.000E+00 0.0 0.0% H20

0.000E+00 0.0 0.0% sigH

134.00

3.0

132.00

4.0

28.450

28.450

-80.530

-80.530

1.262E-03 6.618E-09 588.2 -29.8 -20.7 -0.005 Mean

27.6% 12.3% 15.9% M-76

-3.9% 1.3% -5.2% 70.5 18.2 ranS

3.3% 6.3% 14.3% 43.5 47.4 sigS

17.6% 4.1% 13.5% 76.1 -35.3 ranL

14.1% 3.9% 8.9% 51.9 56.6 sigL

13.7% 5.4% 8.3% 146.7 -17.1 1.16 ranT

14.5% 7.4% 16.8% 67.7 73.8 7.82 sigT

1.436E-03 6.976E-09 637.2 116.9 -37.9 1.16 Tot.

45.2% 18.3% 25.6% T-76

0.000E+00 0.000E+00 0.0 0.0% H20

0.000E+00 0.000E+00 0.0 0.0% sigh

1.404E-03 7.773E-09 559.6 -36.7 -18.6 -0.005 Mean

26.6% 12.6% 14.5% M-76

-3.6% -2.6% -1.0% 81.0 5.2 ranS

3.4% 6.3% 14.8% 43.0 48.2 sigS

17.8% 2.8% 15.0% 92.0 -33.9 ranL

14.7% 4.0% 9.4% 51.7 57.9 sigL

14.3% 0.2% 14.1% 173.0 -28.7 0.36 ranT

15.1% 7.5% 17.5% 67.3 75.4 7.65 sigT

1.604E-03 7.789E-09 638.2 136.3 -47.3 0.36 Tot.

44.6% 12.8% 30.6% T-76

71



130,00 28.450 -80.530

5.0

128.00 28.450 -80.530

6.0

0.000E+00

0.000E+00

1,572E-03

25.7%

-4.9%

3.5%

20.5%

15.3%

15.6%

15.7%

1.816E-03

45.2%

0.000E+00

0.000E+00

0.000E+00

0.000E+00

9.220E-09

13.1%

3.3%

6.3%

2.9%

4.1%

6,2%

7.6%

9.791E-09

20.1%

0.000E+00

0.000E+00

0.0

0.0

530,5

13.1%

-8.2%

15.3%

17.6%

9.8%

9,4%

18.1%

580.1

23.6%

0.0

0.0

-43.4

58.3

42.5

77.0

51.6

135,3

66,9

91,9

0.0% H20

0.0% sigh

-16.5

-ii .6

48 9

-43 7

59 3

-55 3

76 9

-71 8

-0.OO5

0.44

7.48

0.44

0.0%

0.0%

Mean

M-76

tans

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

1.772E-03

24.9%

-5,8%

3.6%

19.0%

15.8%

13.3%

16.2%

2.007E-03

41.5%

0.000E+00

0.000E+00

I.I06E-08

13.8%

1.2%

6,4%

4,4%

4.2%

5.7%

7,6%

1.168E-08

20.3%

0.000E+00

0.000E+00

501.1 -49,7 -14.5 -0.005 Mean

11.6% M-76

-7.0% 70.7 -42.5 tans

15.7% 42.1 49.6 sigS

14,6% 85.5 -27.2 ranL

10.3% 51.4 60.6 sigL

7.6% 156.2 -69.7 -3.31 rant

18.8% 66.4 78.4 7.31 sigT

539,2 106,6 -84,2 -3.32 Tot.

20.1% T-76

0,0 0.0% H20

0.0 0.0% sigh

126.00

7.0

28.450 -80.530 2,013E-03

24.3%

-4.8%

3.7%

18.9%

16.4%

14.1%

16.8%

2.297E-03

41.8%

0. 000E+00

0.000E+00

1.342E-08

14.6%

2.9%

6.4%

3,1%

4.3%

6.0%

7.7%

1,423E-08

21.6%

0.000E+00

0.000E+00

471.5 -55.3 -12.6 -0.005 Mean

10.1% M-76

-7.7% 86.4 -65.6 tans

16.2% 41.6 50.3 sigS

15.8% 87.2 -18.7 ranL

10.7% 51.2 62.0 sigL

8.0% 173.6 -84.4 -1.47 ranT

19.4% 66.0 79.8 7.14 sigT

509.3 118.3 -97,0 -1.47 Tot.

19.0% T-76

0.0 0.0% H20

0.0 0.0% sigh

124.00

8.0

28,450 -80.530 2.308E-03

23.9%

-5.6%

3,8%

18.9%

16.9%

13,2%

17.3%

2. 613E-03

40.3%

0. 000E+00

0.000E+00

1. 650E-08

15.6%

9,5%

6.4%

3.0%

4.4%

12,5%

7,8%

1. 856E-08

30 .O%

0. 000E+00

0. 000E+00

441,8

8.8%

-15.1%

16.6%

15.8%

Ii .2%

0.7%

20.0%

445.1

9.6%

0,0

0.0

-60.0 -10.8

56.5 -90.0

41.1 50.9

75.9 -20,0

51.1 63.3

132.5 -109.9

65.5 81.2

72,5 -120.7

-0.005

1.06

6.97

I .06

0.0%

0,0%

Mean

M-76

tans

sigS

ranL

sigL

ranT

s igT

Tot.

T-76

H20

sigH

122.00

9.0

28,450 -80.530 2.672E-03 2.057E-08 412,3 -63.6 -9.1

23.5% 16.5% 7.5%

-2.6% 6.3% -8.9% 55.8 -90.0

3.9% 6.5% 17,0% 40.6 51.5

22.0% 3.0% 19.0% 76.4 -16.6

-0,004 Mean

M-76

ranS

sigE
ranL
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17.4% 4.4% 11.6%

19.3% 9.3% 10.1%

17.8% 7.8% 20.5%

3.189E-03 2.248E-08 453.8

47.4% 27.3% 18.3%

0.000E+00 0.000E+00 0.0

0.000E+00 0.000E+00 0.0

50.9

132.3

65.1

68.7

64.6

-106.6

82.6

-115.7

0.95

6.80

0.94

0.0%

0.0%

s igL

ranT

sigT

Tot.

T-76

H20

sigH

120.00

10.0

118.00

ii .0

28.450

28.450

-80.530

-80.530

3.127E-03

23 2%

-3 8%

4 0%

22 4%

17 9%

18 5%

18 3%

3.706E-03

46.0%

0.000E+00

0.000E+00

2.602E-08 383.6 -65.9 -7.5 -0.004 Mean

17.1% 6.6% M-76

1.3% -5.2% 54.6 -67.3 ranS

6.5% 17.3% 40.1 52.1 sigS

2.3% 20.0% 86.3 3.5 ranL

4.5% 12.0% 50.7 65.9 sigL

3.7% 14.8% 140.9 -63.8 1.48 ranT

7.9% 21.1% 64.6 84.0 6.63 sigT
2.697E-08 440.6 74.9 -71.4 1.48 Tot.

21.4% 22.4% T-76

0.000E+00 0.0 0.0% H20

0.000E+00 0.0 0.0% sigH

3.693E-03 3.331E-08 355.8

22.5% 17.0% 5.9%

-3.5% -5.1% 1.5%

3.8% 7.1% 16.2%

21.6% 1.4% 20.2%

17.4% 5.0% 11.4%

18.1% -3.7% 21.7%

17.8% 8.7% 19.8%

4.359E-03 3.208E-08 433.2

44.6% 12.7% 28.9%

1.177E-09 7.778E-15 184.7

4.236E-10 2.800E-15 0.0

-66.4

48.3

39 6

85 5

5O 5

133 8

64 2

67 4

-6.0

-44.4

52.9

-3.9

67.4

-48.3

85.7

-54.3

-0.003

1.95

6.49

1.95

0.0%

0.0%

Mean

M-76

tans

sigS

ranL

sigL
ranT

sigT

Tot.

T-76

H20

sigh

116.00

12.0

28.450 -80.530 .392E-03 4.309E-08 328.8 -64.5 -4.5 -0.003 Mean

20.9% 15.8% 5.4% M-76

-1.4% -9.1% 7.7% 35.2 8.1 ranS

3.7% 7.7% 15.0% 39.2 53.6 sigS

18.7% 0.0% 18.7% 99.0 16.6 ranL

16.9% 5.5% 10.7% 50.3 68.9 sigL

17.3% -9.1% 26.4% 134.2 24.7 7.07 ranT

17.3% 9.5% 18.4% 63.8 87.3 6.36 sigT

.152E-03 3.918E-08 415.6 69.7 20.2 7.07 Tot.

41.8% 5.3% 33.2% T-76

.513E-09 1.077E-14 178.6 0.0% H20

.448E-I0 3.876E-15 0.0 0.0% sigH

114.00

13.0

28.450 -80.530 5.278E-03

18 7%

-i 9%

3 5%

19 8%

16 4%

17 9%

16 8%

6.223E-03

39.9%

1.956E-09

7.042E-10

5.654E-08 302.8 -60.7 -3.0 -0.002 Mean

13.6% 5.2% M-76

-15.5% 13.6% 3.7 2.5 ranS

8.2% 13.8% 38.7 54.3 sigS

-0.6% 20.4% 88.2 18.0 ranL

6.0% 10.0% 50.1 70.4 sigL

-16.1% 34.0% 91.9 20.5 2.76 ranT

10.2% 17.1% 63.3 88.9 6.22 sigT

4.746E-08 405.7 31.1 17.5 2.76 Tot.

-4.6% 40.9% T-76

1.503E-14 172.0 0.0% H20

5.410E-15 0.0 0.0% sigh

73



Z

=- i

112.00

14,0

110.00

15.0

108.00

16.0

106.00

17.0

104.00

18.0

28.450

28,450

28,450

28.450

28.45O

-80.530 6.435E-03

15.8%

-232%

3,4%

20.2%

15.9%

18.0%

16.3%

7.594E-03

36.7%

2.552E-09

9.186E-I0

7.554E-08

10.5%

-14.5%

8.8%

-0.5%

6.5%

-15.1%

ii.0%

6.415E-08

-6.2%

2,123E-14

7.642E-15

278.0

5.3%

12.3%

12.7%

20.8%

9.3%

33.1%

15.7%

370.0

40.1%

164.9

0.0

-55.4

15.2

38.2

87.8

49.9

103.0

62.9

47.6

-1.6

14.2

55.0

-8 .I

71.8

6.1

90.5

4.5

-0.002

-1.17

6.09

-1.17

0.0%

0.0%

-80.530 8,000E-03

12.6%

-2.1%

3.3%

21.0%

15.5%

18.8%

15.8%

9,507E-03

33,8%

3.396E-09

1.223E-09

1.035E-07

6,6%

-23.2%

9,4%

-1.3%

7,0%

-24.5%

11,7%

7.813E-08

-19,5%

3.074E-14

1.107E-14

253.8

5.8%

21,1%

ii .5%

22.3%

8.6%

43.4%

14.3%

363.9

51.6%

157.3

0.0

-49.2

i0.2

37.7

78.3

49.7

88.5

62.4

39.3

-0.4

45.8

55 6

0 6

73 3

46 4

92 0

46 0

-0.001

2.35

5.95

2.35

0.0%

0.0%

-80,530 1.018E-02

9.3%

-3 9%

3 1%

19 3%

15 0%

15 3%

15 3%

1.174E-02

26.0%

4.705E-09

1.694E-09

-80.530 1,329E-02

6.7%

-4.O%

3.0%

14.4%

14.5%

10.4%

14.8%

1.467E-02

17.8%

6.686E-09

2.407E-09

1,436E-07

3,9%

-28.2%

9.9%

0.9%

7.5%

-27.3%

12.5%

1.044E-07

-24.4%

4.575E-14

1.647E-14

234.7

5.1%

24.2%

10.4%

18.4%

7.9%

42.6%

13.0%

334.6

49.8%

150.8

0.0

-41.9

19.3

37.3

86.3

49.5

105.6

62.0

63.7

0.7

8.1

56.3

19.1

74.8

27,2

93.7

27.8

-0,001

1.95

5.81

1.95

0.0%

0.0%

2.033E-07

4.1%

-30.1%

10.4%

-4.8%

8.0%

-34.8%

13.2%

1.325E=07

-32.2%

6.950E-14

2.502E-14

217.8

2.3%

26.0%

9.3%

19.2%

7.1%

45.2%

11.7%

316.3

48.6%

144.6 •

0.0

-34.4 1.6

44.0

36.8

82.5

49.4

126.4

61.6

92 .I

40.7

57 0

I0 8

76 4

51 5

95 3

53 1

-0,001

0.28

5.68

0.27

0.0%

0.0%

-80.530 1.780E-02

5.5%

-5.5%

2.8%

13.6%

14.0%

8.1%

14,2%

2.919E-07

5.4%

-30.4%

I0.9%

-4.4%

8.6%

-34,8%

13,9%

204.9

-0.2%

24.9%

8.1%

18.0%

6.3%

42.9%

10,3%

-27.2

26.5

36.4

82.8

49.1

109.3

61,1

2.3

10.2

57.6

-16.1

77.9

-5.9

96,9

-0.001

-2.80

5,54

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT
Tot,

T-76

H20

sigH

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

Mean

M-76

ranS

sigS

ranL

sigL

rant

sigT

Tot.

T-76

H20

sigh

Mean

M-76

tans

sigS

ranL

sigL

rant

sigT
Tot.

T-76

H20

sigh

Mean

M-76

ranE

sigS

ranL

s igL

rant

sigT
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1.924E-02

14.0%

9.698E-09

3.489E-09

1.903E-07

-31.3%

1.064E-13

3. 828E-14

292.7

42.5%

139.6

0.0

82.1 -3.6 -2.80 Tot.

T-76

0.0% H20

0.0% sigh

102.00

19.0

28.450 -80.530 2. 439E-02

5.5%

-5.0%

2.7%

i0.4%

13.5%

5.4%

13.7%

2. 570E-02

11.1%

i .431E-08

5. 137E-09

4.204E-07

6.9%

-23 1%

ii 5%

-6 0%

9 1%

-29 1%

14 7%

2. 980E-07

-24.2%

1.627E-13

5.842E-14

196.2

-1.7%

18 1%

7 1%

16 4%

5 6%

34 5%

9 0%

263.9

32.3%

136.1

0.i

-20.5 3.0 -0.001 Mean

M-76

-10.9 -13.4 ranS

35.9 58.2 sigS
97.7 7.8 ranL

48.9 79.4 sigL
86.7 -5.6 -4.06 ranT

60.7 98.5 5.40 sigT

66.3 -2.6 -4.06 Tot.

T-76

0.0% H20

0.0% sigH

i00.00 28.450

20.0

98.00 28.450

21.0

96.00 28.450

22.0

94.00 28.450

23.0

-80.530 3.402E-02

6.3%

-4.0%

2.6%

7.6%

12.9%

3.6%

13.2%

3.523E-02

10.1%

2.162E-08

7.701E-09

-80.530 4.812E-02

6.9%

-4.0%

2.6%

7.0%

13.1%

3.0%

13.4%

4.954E-02

10.1%

3.505E-08

1.236E-08

-80.530 6.845E-02

7.4%

-2.3%

2.5%

4.4%

13.3%

2.1%

13.5%

6.989E-02

9.6%

5.735E-08

1.993E-08

-80.530 9.867E-02

9.0%

-1.7%

6.114E-07 189.5 -14.6

9.1% -2.9%

-12.5% 8.5% -35.6

12.0% 5.9% 35.4

-1.0% 8.6% 99.0

9.7% 4.7% 48.7

-13.6% 17.1% 63.4

15.4% 7.5% 60.2

5.285E-07 222.0 48.8

-5.7% 13.8%

2.527E-13 133.4

9.004E-14 0.2

8.802E-07 187.3 -10.7

9.2% -2.3%

-9.7% 5.7% -12.9

II .6% 5.9% 34.4

0.9% 6.0% 99.0

9.7% 4.8% 48.4

-8.8% 11.8% 86.1

15.1% 7.6% 59.4

8.028E-07 209.3 75.4

-0.4% 9.2%

4.122E-13 132.7

1.453E-13 0.4

1.266E-06

9.0%

0 9%

Ii 1%

1 4%

9 6%

2 3%

14 7%

1.295E-06

11.5%

6.743E-13

2.344E-13

1.814E-06

8.6%

4.4%

3.5 -0.001 Mean

M-76

42.7 ranS

58.8 sigS
2.5 ranL

80.9 sigL

45.2 -3.26 rant

i00.0 5.26 sigT

48.8 -3.26 Tot.

T-76

0.0% H20

0.0% sigh

4.0 -0.002 Mean

M-76

64.4 ranS

59.7 sigS

15.2 ranL

84.1 sigL

79.6 -3.16 rant

103.1 5.16 sigT

83.5 -3.16 Tot.

T-76

0.0% H20

0.0% sigh

186.3 -7.9 4.3 -0.002 Mean

-1.6% M-76

-3.2% -34.4 88.4 ranS

5.9% 33.3 60.5 sigS

3.0% 87.6 32.5 ranL

4.8% 48.1 87.2 sigL

-0.2% 53.2 120.9 -6.47 rant

7.6% 58.5 106.1 5.06 sigT

185.9 45.3 125.2 -6.48 Tot.

-1.8% T-76

132.6 0.0% H20

0.6 0.0% sigh
......................

188.2 -5.8 4.6 -0.003 Mean

0.3% M-76

-6.1% -20.4 80.9 ranS
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2.5%

4.6%

13.4%

2.9%

13.7%

1.015E-01

12.1%

9.677E-08

3.355E-08

I0.7%

2.6%

9.6%

7.0%

14.4%

1.941E-06

16.2%

1.121E-12

3. 887E-13

5.9%

2.0%

4.9%

-4.1%

7.7%

180.5

-3.9%

133.9

0.7

32

53

47

33

57

27

3 61

4 27

7 90

1 108

6 109

3 113

2 sigS

8 ranL

4 sigL
7 -7.58 ranT

2 4.96 sigT
3 -7.58 Tot.

T-76

0.0% H20

0.0% sigh

92.00

24.0

90.00

25.0

88.00

26.0

28.450

28.450

28.450

-8O.530

-80.530

-80.530

1.429E-01

10.9%

-1.8%

2.5%

6.4%

13.6%

4.6%

13.8%

1.495E-01

16.0%

1.667E-07

5.841E-08

2.048E-01

11.6%

-1.3%

2.5%

6.2%

13.7%

4.8%

14.0%

2.148E-01

17.0%

2.855E-07

1.008E-07

2.875E-01

9.9%

-0.9%

2.1%

4.8%

11.8%

4.0%

12.0%

2.989E-01

14.2%

4.758E-07

1.684E-07

2.569E-06

7.4%

3.1%

10.2%

2.7%

9.5%

5.8%

14.0%

2.718E-06

13.6%

1.878E-12

6.581E-13

3. 602E-06

5.4%

3.8%

9.8%

4.9%

9.4%

8.7%

13.6%

3.914E-06

14.6%

3.126E-12

I.I03E-12

4.968E-06

1.9%

10.0%

8.2%

7.5%

8.2%

17.5%

11.6%

5.839E-06

19.8%

5.118E-12

1.811E-12

193.0 -4.0 4.7

3.3%

-4.8% -22.9 14.8

5.9% 31.3 61.8

3.7% 40.0 56.6

5.0% 47.3 93.6

-1.2% 17.1 71.4

7.7% 56.7 112.2

190.8 13.2 76.1

2.0%

136.6

0.5

-0.004 Mean

M-76

ranS

sigS
ranL

sigL

-9.72 ranT

4.85 sigT

-9.72 Tot.

T-76

0.0% H20

0.0% sigH

197.9

5.9%

-5.1%

5.9%

1.3%

5.1%

-3.8%

7.8%

190.3

1.9%

139.3

0.4

201.4

7.8%

-I0.9%

5.1%

-2.7%

4.4%

-13.6%

6.7%

174.1

-6.8%

141.4

0.3

-2.4 4

-I0 9 22

30 2 62

48 5 53

47 0 96

37 6 76

55 8 115.2

35.2 81.4

.8 -0.004 Mean

M-76

.9 ranS

.4 sigS

.7 ranL

.9 sigL

.6 -4.57 rant

4.75 sigT
-4.57 Tot.

T-76

0.0% H20

0.0% sigH

4.0 4.6

6.5 -9.3

26.8 48.9

27.9 72.4

42.8 78.0

34.4 63.2

50.5 92 .I

38.4 67.7

-0.003 Mean

M-76

ranS

sigS

ranL

sigL

-4.42 ranT

4.49 sigT

-4.43 Tot.

T-76

0.0% H20

0.0% sigh

86.00

27.0

28.450 -80.530 4.013E-01

7.5%

-0.1%

1.7%

4.5%

9.5%

4.4%

9.6%

4.190E-01

12.2%

7.887E-07

6.816E-06

-2.0%

1.5%

6.3%

5.5%

6.5%

7.0%

9.1%

7.293E-06

4.8%

8.338E-12

204.9 10.4 4.3 -0.003 Mean

9.7% M-76

-1.5% 0.3 -16.5 tans

4.1% 23.2 31.6 sigS
-1.1% 35.5 24.2 ranL

3.6% 38.0 51.8 sigL

-2.6% 35.8 7.8 -3.29 rant

5.5% 44.5 60.6 4.22 sigT

199.7 46.2 12.1 -3.30 Tot.

6.8% T-76

143.6 0.0% H20
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2.796E-07 2.956E-12 0.3 0.0% sigH

84.00

28.0

28.450 -80.530 5.563E-01

4.8%

-0.8%

1.4%

3.4%

7.9%

2.7%

8.0%

5.711E-01

7.5%

1.305E-06

4.624E-07

9.341E-06

-3 6%

-4 8%

5 O%

3 7%

5 4%

-I 1%

7.4%

9.241E-06

-4.7%

1.363E-II

4. 830E-12

207.4

8 7%

4 0%

3 4%

-0 3%

3 1%

3 7%

4 6%

215.2

12.7%

145.3

0.3

16.8

6.5

2O 6

42 9

34 7

49 4

4O 4

66 2

4.6 -0.002 Mean

M-76

-4.8 tanS

17.5 sigS
17.8 ranL

29.5 sigL
13.0 -0.56 rant

34.3 3.93 sigT
17.6 -0.57 Tot.

T-76

0.0% H20

0.0% sigh

82.00

29.0

28.450 -80.530 7.680E-01

2.4%

-1.3%

1.3%

2.7%

7.4%

1.4%

7.5%

7.790E-01

3.9%

2.158E-06

7.630E-07

1.282E-05

-4.5%

-7.7%

4.7%

1.3%

5.2%

-6.5%

7.0%

1.199E-05

-10.6%

2.239E-II

7.916E-12

208.9

7.2%

6.4%

3.3%

1.5%

2.9%

7.9%

4.4%

225.3

15.7%

146.5

0.4

23.1

6.5

19.4

44.8

33.6

51.4

38.9

74.5

5.3

-3.2

15.6

20.5

27.0

17.3

31.2

22.7

-0.003

1.17

3.62

1.17

0.0%

0.0%

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

80.00

30.0

78.00

31.0

28.450

28.450

-80.530

-80.530

1.057E+00

0.5%

-1.3%

1.2%

3.4%

6.9%

2.1%

7.0%

1.080E+00

2.6%

3.393E-06

1.020E-06

1.450E+00

-1.2%

-0.8%

1.2%

4.8%

7.0%

4.0%

7.1%

1.508E+00

2.7%

3.937E-06

1.398E-06

1.754E-05

-5.0%

-3.4%

4.3%

0.6%

4.9%

-2.9%

6.5%

1.704E-05

-7.7%

3.496E-II

1.051E-II

2.389E-05

-5.4%

-0.5%

4.2%

1.1%

5.1%

0.6%

6.6%

2.403E-05

-4.8%

4.032E-II

1.432E-II

210.3

5.9%

2 1%

3 1%

2 9%

2 8%

5 0%

4 2%

220.8

ii .2%

147.6

0.4

211.6

4.5%

-0.3%

3.0%

3.7%

2.8%

3.4%

4.2%

218.8

8.0%

147.6

0.5

29.4

6.9

18 2

42 7

32 5

49 6

37 2

79 0

36.3

• 18.2

17.7

40.7

32.4

58.9

36.9

95.3

-9

13

18.8

24.2

9.3

27.8

15.4

-14.7

13.0

Ii .8

23.9

-2.9

27.3

2.4

.I -0.003

.5

.6

-0.79

3.30

-0.79

0.0%

0.0%

-0.002

-0.88

2.98

-0.89

0.0%

0.0%

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigH

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

76.00

32.0

28.450 -80.530 1.983E+00

-2.5%

-0.2%

1.2%

5.1%

7.1%

3.246E-05

-5.4%

3.4%

4.2%

1.5%

5.2%

212.9

3.1%

-3.5%

3.0%

3.6%

2.8%

43.3

18.1

17.1

30.2

32.4

4.7

-9.0

12.5

I0.i

23.6

-0.001 Mean

M-76

tanS

sigS

ranL

sigL
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74.00 28.450 -80.530

33.0

72.00 28.450 -80.530

34.0

70.00 28.450 -80.530

35.0

5.0%

7.2%

2.082E+00

2.4%

5.722E-06

1.913E-06

2.709E+00

-3.3%

0.2%

1.1%

2.3%

7.0%

2.4%

7.1%

2.775E+00

-0.9%

8.622E-06

2.613E-06

3.688E+00

-3 9%

0 5%

1 O%

1 8%

6 5%

2 4%

6 6%

3.775E+00

-1.6%

1.481E-05

4.191E-06

5.003E+00

-4.2%

0.7%

0.8%

2.2%

5.9%

2.9%

6.0%

5.148E+00

-1.4%

2.704E-05

7.238E-06

4.9%

6.6%

3.405E-05

-0.8%

5.824E-II

1.948E-II

4.391E-05

-5 3%

4 0%

4 0%

0 3%

5 1%

4 4%

6 5%

4.583E-05

-1.2%

8.695E-II

2.635E-II

5.905E-05

-5.3%

2.9%

3.6%

0.8%

4.9%

3.8%

6.1%

6.128E-05

-1.8%

1.476E-I0

4.175E-II

0.1%

4.2%

213.0

3.2%

148.3

0.6

48.3 I.I

36.6 26.7

91.5 5.8

0.43 ranT

2.67 sigT

0.43 Tot.

T-76

0.0% H20

0.0% sigh

214.8

2.1%

-3 9%

2 9%

1 9%

2 8%

-i 9%

4 O%

210.7

0.2%

149.6

0.6

217.5

1.5%

-2.4%

2.6%

1.0%

2.8%

-I .4%

3.8%

214.4

0.1%

151.6

0.6

48.6 4.5

5.6 -14.1

17 1 11.6

22 3 3.6

32 2 21.8

27 9 -10.5

36 5 24.7

76 5 -6.0

52.4 4.7

12.6 -12.5

17.6 10.1

20.1 7.8

31.9 18.1

32.6 -4.8

36.5 20.7

85.0 -0.I

-0.001 Mean

M-76

ranS

sigS

ranL

sigL
1.72 ranT

2.39 sigT

1.72 Tot.

T-76

0.0% H20

0.0% sigH

-0.001 Mean

M-76

ranS

sigS
ranL

sigL

0.34 ranT

2.15 sigT

0.34 Tot.

T-76

0.0% H20

0.0% sigh

7.912E-05 220.2 56.1 4.9 0.000 Mean

-4.5% 0.3% M-76

4.6% -3.9% 7.3 -6.8 tans

3.3% 2.3% 18.1 7.9 sigS

1.7% 0.5% 16.2 8.3 ranL

4.6% 2.7% 31.7 13.6 sigL

6.3% -3.4% 23.4 1.5 0.23 ranT

5.6% 3.5% 36.5 15.8 1.91 sigT

8.414E-05 212.6 79.5 6.4 0.23 Tot.

1.6% -3.2% T-76

2.660E-I0 153.9 0.0% H20

7.122E-II 0.6 0.0% sigH

68.00 28.450 -80.530 6.761E+00 1.049E-04 224.5

-4.1% -4.0% -0.2%

36.0 0.6% 3.4% -2.8%

0.7% 3.1% 2.2%

3.4% -0.1% 3.5%

5.6% 4.5% 2.8%

4.0% 3.3% 0.7%

5.7% 5.4% 3.6%

7.032E+00 1.083E-04 226.1

-0.3% -0.8% 0.5%

4.336E-05 4.184E-I0 156.6

8.770E-06 8.463E-II 0.4

...............................................

66.00 28.450 "80.530 9.084E+00 1.382E-04 228.9

57.8 5.0 0.001 Mean

M-76

15.9 1 4 tans

17.6 8 5 sigS

24.6 13 7 ranL

29.8 14 0 sigL

40.5 15 1 0.22 ranT

34.6 16 4 1.76 sigT

98.3 20 1 0.22 Tot.

T-76

0.0% H20

0.0% sigH

......................

59.6 5.1 0.002 Mean
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-4.0% -3,3% -0.7%

37.0 0.5% 2.3% -I .8% 28.8 -0.4
0.6% 2.9% 2 .0% 17 .0 9 .I

3.5% -0,3% 3.8% 30.4 9.9

5.3% 4.4% 2.9% 27.9 14.3

4.0% 2.0% 1.9% 59.2 9.5

5.4% 5,3% 3.6% 32.7 16.9

9.444E+00 1.410E-04 233.3 118.8 14.6

-0.2% -1.4% 1.2%

6.923E-05 6,554E-10 159.2

1. 059E-05 I. 002E-10 0.2

......................

64.00 28.450 -80.530 1.215E+01 1.813E-04 233.4 60.3

-3.7% -2.6% -1.1%

38.0 0.8% 2.1% -1.3% 9.2 5.3
0.6% 2.9% 2,0% 16.5 9.6

1.9% -I .8% 3.7% 36.8 9.0

5.2% 4.4% 2.9% 26.2 13.7

2.7% 0.3% 2,4% 45.9 14.3

5.3% 5.2% 3.5% 30.9 16.7

1.247E+01 1. 818E-04 238.9 106.2 19.5

-1.1% -2.3% 1.2%

1.031E-04 9.573E-I0 161.6

1.511E-05 1.403E-I0 0.2

.........................

62.00 28.450 -80.530 1.616E+01 2.365E-04 238.0 60.1
-3.2% -I .8% -I .5%

39.0 1.1% 4,2% -3.0% 7.7

0.7% 3.0% 2.0% 16.0

1.6% -0.4% 2.0% 43.9

5.4% 4.4% 2,6% 24.6

2.8% 3.8% -1.0% 51.6

5.4% 5.3% 3.2% 29.4

i. 660E+01 2.454E-04 235.6 111.6

-0.5% 2.0% -2.5%

1.478E-04 1.346E-09 164.0

2. 328E-05 2, II9E-10 0.2

M-76

tans

sigS

ranL

sigL

0.09 ranT

1.61 sigT

0.10 Tot.

T-76

0.0% H20

0.0% sigh

5.2 0.003 Mean
M-76

ranS

sigS

ranL

s igL

1.25 ranT

1.55 sigT

1.26 Tot.

T-76

0.0% H20

0.0% sigh

5.3 0.004 Mean

M-76

1.1 ranS

9.8 s igS

ii. 0 ranL

12.2 sigL

12.1 -1.19 ranT

15.6 1.58 sigT

17.3 -1.18 Tot.

T-76

0.0% H20

0.0% sigh

60.00 28.450 -80,530 2,138E+01 3. 069E-04 242.7 59.8 5.3 0.004 Mean
-2.7% -0.9% -I .8% M-76

40.0 1.1% 2.4% -1.3% 0.8

0.8% 3.1% 2.0% 15.5

2.7% -0.2% 2.9% 35.5

5.5% 4.4% 2 .3% 23.0

3.8% 2.2% 1.6% 36.3

5.6% 5.4% 3 .0% 27,8
96.12.219E+01 3.137E-04 246.6

1.0% 1.3% -0.2%

2.055E-04 1.835E-09 166.2

3.312E-05 2.957E-I0 0.2

.......................

58.00 28.450 -80.530 2.812E+01 3.951E-04 248.1
-2.1% -0.3% -1.8%

41.0

55.3

-5.3 ranS

9.8 sigS

5.1 ranL

10.7 sigL

-0.2 -0.62 ranT

14.5 1.61 sigT

5.1 -0.61 Tot.

T-76

0.0% H20

0.0% sigh

5.7 0,004 Mean

M-76

1.0% 1.2% -0.2% 7.2 -9.1

0.9% 3.1% 2.0% 14.8 9,9

4.3% 0.2% 4.2% 39.6 7.0

5.4% 4.2% 2.1% 23.5 9.9

5.4% 1.4% 4.0% 46.8 -2.1

5.5% 5.2% 2.9% 27.8 14.0

2.963E+01 4.007E-04 257.9 102.1 3.6

ranS

sigS

ranL

sigL

1.30 ranT

1.53 sigT

1.30 Tot.

79



56.00 28.450 -80.530

42.0

54.00 28.450 -80.530

43.0

52.00 28.450 -80.530

44.0

50.00 28.450 -80.530

45.0

3.1%

2.631E-04

3.739E-05

3.678E+01

-1.6%

1.0%

0.9%

3.2%

5.3%

4.2%

5.3%

3.831E+01

2.5%

3.352E-04

4.210E-05

4.784E+01

-1.0%

0.7%

0.9%

2.3%

5.1%

3.0%

5.2%

4.926E+01

1.9%

4.252E-04

4.730E-05

6.199E+01

-0.4%

0.2%

0.9%

1.3%

4.8%

1.5%

4.9%

6.292E+01

1.1%

5.485E-04

5.322E-05

8.004E+01

0.3%

-0.4%

0.8%

2.2%

4.6%

1.8%

4.7%

8.148E+01

2.1%

6.882E-04

5.311E-05

1.1%

2.298E-09

3.266E-I0

5.059E-04

0 3%

1 O%

3 0%

-0 6%

3 9%

0 4%

4 9%

5.080E-04

0.7%

2.866E-09

3.599E-I0

2.1%

168.4

0.1

253.5

-I .8%

0.O%

1.9%

3.7%

1.9%

3.7%

2.7%

262.9

1.9%

170.5

0.I

6.465E-04

1.2%

-0.5%

2.9%

-0.6%

3.7%

-I .2%

4.7%

6.389E-04

0.0%

3.571E-09

3.973E-I0

8.257E-04

2 5%

-0 8%

2 7%

-0 4%

3 5%

-i 2%

4 4%

8.161E-04

1.3%

4.543E-09

4.408E-I0

1.051E-03

2.4%

-2.2%

2.5%

-1.4%

3.4%

-3.6%

4.2%

1.013E-03

-1.3%

5.622E-09

4.338E-10

258.0

-2.1%

1 2%

1 8%

3 0%

1 7%

4 1%

2 5%

268.7

2 .O%

172.3

0.1

261.6

-2.8%

1.0%

1.7%

1.7%

1.6%

2.7%

2.4%

268.6

-0.2%

173.7

0.i

265.2

-2.0%

1.8%

1.5%

3.6%

1.5%

5.4%

2.2%

279.6

3.3%

175.0

0.i

50.9 6.1

-12.2

14.1

43.6

24.1

31.5

27.9

82.4

46.7

-II .2

13.3

45.2

24.5

34.1

27.9

80.8

42.7

-19.8

12.5

42.9

24.9

23.1

27.9

65.8

38.7

-4.8

11.6

40.5

25.4

35.8

27.9

74.5

0.2

9.9

I0.8

9.2

ii.0

13.5

17.1

-0.7

9.9

12.4

8.9

Ii .8

13.3

18.0

6.1

-3.5

9.8

5.3

9.1

1.8

13.4

7.9

-9.5

9.7

3.5

9.3

-5.9

13.4

0.0

T-76

0.0% H20

0.0% sigh

0.003 Mean

M-76

ranS

sigS

ranL

sigL
0.25 ranT

1.46 sigT

0.26 Tot.

T-76

0.0% H20

0.0% sigh

0.003 Mean

M-76

ranS

sigS

ranL

sigL

-0.I0 rant

1.37 sigT
-0.I0 Tot.

T-76

0.0% H20

0.0% sigh

0.002 Mean

M-76

ranS

sigS

ranL

sigL
-0.82 ranT

1.26 sigT
-0.82 Tot,

T-76

0.0% H20

0.0% sigH

0.001 Mean

M-76

ranS

sigS

ranL

sigL

-0.64 rant

1.15 sigT

-0.64 Tot.

T-76

0.0% H20

0.0% sigh

48.00 28.450

46.0.

-80.530 1.030E+02

0.7%

-0.3%

0.8%

1.353E-03

2.8%

-1.7%

2.5%

265.2

-2.0%

1.4%

1.6%

36.3

-7.5

11.0

5.7

-13.3

9.1

0.000 Mean

M-76

ranS

sigS
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46.00 28.450

47.0

44.00 28.450

48.0

42.00 28.450

49.0

40.00 28.450

50.0

-80.530

1.8% -2.9%

4.4% 3.3%

1.5% -4.6%

4.4% 4.1%

1.046E+02 1.291E-03

2.2% -2.0%

8.430E-04 6.889E-09

5.021E-05 4.103E-10

1,326E+02 1.742E-03

0.9% 1,6%

-0.4% -2.0%

0.7% 2.4%

1.3% -4.3%

4.1% 3.3%

0.9% -6.3%

4.2% 4.0%

1,337E+02 1.633E-03

1.8% -4.7%

1,066E-03 8.712E-09

7.080E-05 5.787E-I0

-80.530 1.708E+02 2.263E-03

0.8% 0,2%

-0.6% -1.3%

0.6% 2.3%

0.9% -4.0%

3.9% 3.2%

0.4% -5.3%

3.9% 3.9%

1.714E+02 2. 142E-03

1.1% -5.2%

1.336E-03 I.I01E-08

8. 532E-05 7.030E-I0

-80.530 2. 208E+02 2. 973E-03

0.4% -0.7%

-0.5% -0.5%

0.6% 2.1%

0.3% -4.2%

3.7% 2.9%

-0.2% -4.7%

3.7% 3.6%

2. 204E+02 2. 833E-03

0.2% -5.4%

1,675E-03 1.402E-08

9.201E-05 7,704E-I0

-80.530 2. 868E+02 3. 924E-03

-0.1% -I .8%

-O.3% -0.8%

0.5% 1.9%

0.9% -2.9%

3.5% 2.7%

0.6% -3.6%

3.5% 3.3%

2. 883E+02 3. 781E-03

0.4% -5.4%

2. 446E-03 2. 081E-08

I. 059E-04 9.014E-I0

4.7%

1.6%

6.1%

2,3%

281.4

4.0%

174.7

0.I

265.1

-0.7%

1.6%

1.6%

5.6%

1.7%

7.2%

2.4%

284.1

6.4%

174.6

0.I

263.0

0.6%

O.7%

1.6%

5.0%

1.8%

5.7%

2.4%

278.0

6.3%

173.6

0.i

258.8

1.2%

0 .O%

1.5%

4.5%

1.9%

4.5%

2.4%

270.5

5.7%

171.8

0.2

33.6 5.6

24.7 9.0

26.1 -7.8

27.0 12.8

62.4 -2.1

-0.62

1.05

-0.62

33.9 5.5

0.0%

0.0%

0.000

-18.2 -17.7

10.3 8.5

28.2 5.7

23.9 8.7

i0.0 -12.1

26.1 12.1

43.9 -6.6

-0.22

0.94

-0.22

31.4 5.2

0.0%

0.0%

-0.001

-14.6 -8.4

9.7 7.8

25.7 2.9

23.0 8.2

II .2 -5.5

24.9 II .3

42.6 -0.3

0 .II

0.86

0.II

29.0

0.0%

0.0%

4.8 -0.001

-I0.7

9.1

30.7

21.7

20.0

23.5

49.0

-13.2

7.1

-0.2

7.5

-13 .4

i0.3

-8.6

0.35

0.81

0.35

0.0%

0.0%

254.7 26.6

1.7%

0.4% -7.7

1.5% 8 6

3.7% 24 2

1.9% 20 4

4.2% 16 5

2,4% 22 1

265.4 43 1

6.0%

170.7

0.2

4,4

-3.3

6.3

-3.4

6.7

-6.8

9.2

-2.4

-0.001

0.57

0.75

0.57

0.0%

0.0%

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigH

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh
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38.00 28.450 -80.530 3.748E+02 5.251E-03 248.7

-0.6% -2 1% 1.6%

51.0 -0.1% 2 0% -2 1%

0.5% 1 8% 1 5%

0.8% -2 4% 3 2%

3.2% 2 5% 1 8%

0.7% -0 4% 1 1%

3.3% 3 1% 2 4%

3.774E+02 5.230E-03 251.5

0.1% -2.5% 2.7%

3. 551E-03 3. 093E-08 171.9

1.244E-04 1.084E-09 0.2

23.6

-2.7

8 0

15 8

19 1

13 2

20 7

36 7

3.9 -0.001 Mean

M-76

-3.2 ranS

5.9 sigS
- 1.2 ranL

6.3 s igL

-4.4 0.53 rant

8.6 0.70 sigT

-0.5 0.53 Tot.

T-76

0.0% H20

0.0% sigH

36.00 28.450 -80.530 4.929E+02 7.075E-03 242.8

52.0

-1.1% -2,5% 1,5%

-0.1% 1.1% -1.2%

0.5% 1.7% 1.5%

0.9% -1.6% 2.5%

2.9% 2.3% 1.8%

0.8% -0.5% 1.3%

3.0% 2.9% 2.3%

4.968E+02 7.039E-03 245.9

-0.3% -3.0% 2.8%

4.557E-03 4.067E-08 172.8

1.471E-04 1.313E-09 0.2

.................................

34.00 28,450 -80.530 6.528E+02 9.581E-03 237.4

53.0

-1.6% -3.1% 1.6%

0.1% 2.9% -2.8%

0.4% 1.6% 1.4%

0.7% 0.0% 0.7%

2.7% 2.1% 1.7%

0.8% 2.9% -2.1%

2.7% 2.7% 2.2%

6.579E+02 9.854E-03 232.5

-0.8% -0.3% -0.5%

5.831E-03 5.321E-08 173.8

11883E-04 1.720E-09 0.2

20.5 3.4 0,000 Mean

M-76

5.2 -7.2 ranS

7.3 5.5 sigS

28.5 -2.0 ranL

17.7 5.9 sigL

33.7 -9.1 0.35 ranT

19.2 8.1 0.65 sigT
54.2 -5.7 0.35 Tot.

T-76

0.0% H20

0.0% sigh

19.4 2.9 0.000 Mean

M-76

8.7 -4.2 ranS

6,7 5.1 sigS

20.4 -2.8 ranL

16.4 5.4 sigL

29.1 -7.0 0.60 rant

17.7 7.4 0.61 sigT

48.4 -4.1 0.60 Tot.

T-76

0.0% H20

0.0% sigH

32.00 28.450 -80.530 8.701E+02 1.303E-02 232.7

54.0

-2.1%

0.3%

0.4%

1.1%

2.4%

i .4%

2.4%

-3 9% 1 8%

1 6% -i 2%

1 5% 1 3%

0 0% 1 1%

I 9% 1 6%

1 5% -0 1%

2 4% 2 1%

8.826E+02 1.323E-02 232.4

-0.7% -2.4% 1.7%

7.517E-03 7,000E-08 175.0

2.313E-04 2.156E-09 0.2

30.00 28.450 -80.530 1.166E+03 1.783E-02 227.9

55.0

-2.6% -3.1% 0.6%

0.3% 1.0% -0.7%

0.3% 1.3% 1.2%

0.3% -1.3% 1.6%

2.1% 1,7% 1,5%

0.6% -0.3% 1.0%

20.1

8 4

5 9

17 4

15 0

25 8

16 1

45 8

2.4 -0.001 Mean

M-76

-4.5 ranS

4.5 sigS

0.3 ranL

4.8 sigL
-4.2 0.41 rant

6.5 0.57 sigT
-1.8 0.41 Tot.

T-76

0.0% H20

0.0% sigh

20.8 1.9 -0,001 Mean

M-76

6.4 1.2 ranS

5.2 3.8 sigS

4.7 2.0 ranL

13,4 4,1 sigL

ii.i 3.2 0.25 rant
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2.1% 2.1% 2.0% 14.3

1.174E+03 1.778E-02 230.1 31.9

-1.9% -3.4% 1.6%

9.856E-03 9.370E-08 176.4

2.869E-04 2.730E-09 0.2

5.6

5.1

0.53

0.25

0.1%

0.0%

sigT

Tot.

T-76

H20

sigh

28.00

56.0

26.00

57.0

28.450 -80.530

28.450 -80.530

1.575E+03 2.449E-02 224.0 17.4

-2.6% -2.4% -0.2%

0.5% 1.5% -1.0% 3.5

0.3% 1.1% 1.0% 4.5

0.0% -0.9% 0.9% 4.9

1.9% 1.6% 1.4% Ii .9

0.5% 0.6% -0.2% 8.4

1.9% 1.9% 1.7% 12.7

1.582E+03 2.464E-02 223.7 25.8

-2.1% -1.7% -0.4%

1.320E-02 1.276E-07 177.9

3.653E-04 3.536E-09 0.2

2.137E+03 3.381E-02 220.1 13.8

-2.4% -1.3% -1.1%

0.4% 1.4% -0.9% 3.4

0.2% 0.9% 0.9% 3.8

-0.3% -0.9% 0.6% 5.2

1.7% 1.4% 1.3% 10.2

0.2% 0.5% -0.3% 8.6

1.7% 1.7% 1.5% 10.9

2.140E+03 3.396E-02 219.4 22.4

-2.2% -0.9% -1.4%

1.768E-02 1.741E-07 179.5

5.151E-04 5.077E-09 0.2

1.8

2.7

3.3

1.3

3.6

4.0

4.9

5.8

4.3

2 7

2 0

3 0

6 3

4 1

7 9

0.000

-0.05

0.50

-0.05

0.1%

0.0%

0.000

-0.18

0.47

-0.18

0.2%

0.0%

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

Mean

M-76

ranS

sigS

ranL

sigL

ranT

sigT

Tot.

T-76

H20

sigh

24.00

58.0

28.450 -80.530 2.916E+03 4.698E-02 216.2 10.8

-1.9% 0.1% -2.0%

0.4% 1.0% -0.6% 5.8

0.2% 0.8% 0.8% 3.2

-0.7% -1.2% 0.4% 7.4

1.8% 1.3% 1.2% 8.7

-0.3% -0.1% -0.2% 13.2

1.8% 1.5% 1.4% 9.3

2.907E+03 4.692E-02 215.8 24.1

-2.2% 0.0% -2.2%

2.315E-02 2.320E-07 180.9

7.353E-04 7.378E-09 0.3

1.5 0.000 Mean

M-76

2.8 ranS

2.6 sigS

3.4 ranL

2.9 sigL

6.1 -0.26 rant

3.9 0.44 sigT

7.6 -0.26 Tot.

T-76

0.5% H20

0.0% sigh

22.00

59.0

28.450 -80.530 4.021E+03 6. 621E-02 211.5 10.2

-0.7% 2.6% -3.2%

0.3% -0.2% 0.5% 1.3

0.2% 0.9% 0.8% 2.9

-1.0% -1.0% 0.0% 6.1

1.4% 1.3% 1.2% 7.8

-0.7% -1.2% 0.5% 7.4

I .4% 1.6% I .4% 8.3

3.993E+03 6.541E-02 212.6 17.6

-i .4% I .4% -2.7%

2.926E-02 2.997E-07 182.2

1.093E-03 1.121E-08 0.3

1.4 0.000 Mean

M-76

I.I ranS

2.7 sigS

6.1 ranL

3.1 sigL

7.2 0.73 ranT

4.1 0.43 sigT
8.6 0.73 Tot.

T-76

1.1% H20

0.1% sigh

20.00 28.450 -80.530 5.580E+03 9.416E-02 206.5 12.4

0.9% 5.9% -4.7%

1.6 0.000 Mean

M-76
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60.0

18.00 28.450 -80.530

61.0

16.00 28.450 -80.530

62.0

0 2%

0 1%

-0 8%

0 8%

-0 6%

0 8%

5.546E+03

0.3%

3.598E-02

1.851E-03

0 O%

0 9%

-0 4%

1 3%

-0 4%

1 6%

9.375E-02

5.4%

3.776E-07

1.944E-08

0.2% -0.5 -4.4 ranS

0.9% 2.6 3.0 sigS

-0.3% 3.1 5.2 ranL

1.3% 7.2 3.4 sigL

-0.2% 2.6 0.8 0.60 ranT

1.6% 7.6 4.5 0.42 sigT

206.1 15.0 2.4 0.60 Tot.

-4.9% T-76

183.4 2.7% H20

0.4 0.2% sigH

7.789E+03

3.0%

0 1%

0 1%

-i 1%

1 0%

-I 0%

I O%

7.711E+03

1.9%

4.185E-02

4.138E-03

1.335E-01

9.8%

-0.9%

1.0%

-0.9%

1.3%

-1.8%

1.6%

1.311E-01

7.8%

4.462E-07

4.418E-08

1.088E+04

5.1%

0 0%

0 2%

-I 3%

1 2%

-I 3%

1 2%

1.073E+04

3.7%

5.306E-02

1.761E-02

1.850E-01

11.1%

0.0%

0.9%

-1.3%

1.1%

-1.4%

1.4%

1.825E-01

9.6%

5.613E-07

1.866E-07

203.2 19.2 2.3 0.000 Mean

-6.2% M-76

1.0% -2.7 -0.9 ranS

1.0% 2.6 3.9 sigS

-0.2% 2.0 5.8 ranL

1.3% 7.2 4.3 sigL

0.8% -0.7 4.9 0.65 rant

1.6% 7.6 5.8 0.46 sigT

204.9 18.6 7.2 0.65 Tot.

-5.4% T-76

184.2 5.0% H20

0.9 0.6% sigh
.....................

204.8 29.1 3.1 -0.001 Mean

-5.5% M-76

0.1% -0.6 -1.6 ranS

0.9% 3.0 5.1 sigS

0.0% 2.2 6.2 ranL

1.1% 8.4 5.8 sigL

0.0% 1.6 4.5 I.I0 ranT

1.4% 8.9 7.7 0.49 sigT

204.9 30.7 7.6 I.I0 Tot.

-5.4% T-76

185.1 4.8% H20

3.2 2.0% sigh

14.00 28.450 -80.530 1.508E+04 2.495E-01

6.4% 9.5%

63.0 -0.2% 0.1%

0.2% 0.7%

-1.7% -1.1%

1.4% 0.9%

-1.9% -0.9%

1.4% 1.2%

1.479E+04 2.472E-01

4.4% 8.5%

1.124E-01 1.157E-06

4.087E-02 4.213E-07

12.00 28.450 -80.530 2.068E+04 3.291E-01

6.6% 5.5%

64.0 -0.2% -0.4%

0.2% O.7%

-1.7% -1.2%

1.5% 1.1%

-1.9% -1.6%

1.5% 1.3%

2.030E+04 3.238E-01

4.6% 3.8%

210.5

-2.9%

-0.3%

0.7%

-0.6%

0.9%

-0.9%

1.2%

208.5

-3.8%

189.4

3.8

219.0

1.1%

0.1%

0.7%

-0.4%

1.1%

-0.3%

1.3%

218.3

0.8%

38.6 4.0 0.000 Mean

M-76

I.i -4.3 ranS

3.7 6.7 sigS

5.8 5.2 ranL

10.5 7.7 sigL

6.9 1.0 0.01 rant

ii.i 10.2 0.53 sigT

45.5 5.0 0.01 Tot.

T-76

4.8% H20

2.2% sigh

40.3

0.7

4 2

ii 8

12 4

12 5

13 1

52 8

4.6 0.001 Mean

M-76

0.I ranS

8.5 sigS

6.8 ranL

9.7 sigL

6.9 0.92 ranT

12.9 0.58 sigT

11.5 0.92 Tot.

T-76
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I0.00

65.0

28.450 -80.530

5.375E-01

2.085E-01

2.800E+04

5.7%

-0.2%

0.1%

-1.7%

1.3%

-1.9%

1.3%

2.748E+04

3.7%

6.921E+00

2.731E+00

5.318E-06

2.067E-06

4.226E-01

2.2%

-0.6%

0.4%

-1.4%

0.9%

-2.0%

1.0%

4.141E-01

0.2%

6.494E-05

2.569E-05

199.3

4.8

230.8

3.4%

0.4%

0.4%

-0.3%

0.9%

0.1%

1.0%

231.1

3.5%

218.5

6.1

34.2

5.4

4.1

16.2

12.2

21.5

12.9

55.7

4.0

2.2

8.3

4.7

9.6

6.9

12.7

II .0

7.8%

4.0%

0.006

0.70

0.63

0.71

26.2%

14.1%

H20

sigH

Mean

M-76

tans

sigS

ranL

sigL
ranT

sigT

Tot.

T-76

H20

sigh

8.00

66.0

28.450 -80.530 3.724E+04

4.4%

-0.2%

0.1%

-1.2%

1.1%

-1.5%

1.1%

3.669E+04

2.9%

2.549E+01

1.536E+01

5.287E-01

0.6%

-0.8%

0.4%

-1.8%

0.9%

-2.6%

1.0%

5.149E-01

-2.1%

2.250E-04

1.358E-04

245.3 27.2 3.5 0.006 Mean

3.8% M-76

0.6% 3.6 -5.0 tans

0.4% 3.4 7.1 sigS

0.6% 5.5 -1.2 ranL

0.8% 10.4 8.2 sigL

1.2% 9.0 -6.2 0.30 ranT

1.0% ii.0 10.8 0.63 sigT

248.1 36.2 -2.8 0.31 Tot.

5.0% T-76

233.7 35.4% H20

7.4 29.9% sigh

6.00

67.0

4.00

68.0

28.450

28.450

-80.530

-80. 530

4.873E+04

3.2%

-0.1%

0.1%

-1.0%

0.9%

-1.1%

0.9%

4.819E+04

2.1%

7.204E+01

4.382E+01

6.289E+04

2.0%

0.0%

0.1%

-1.0%

0.7%

-1.0%

0.7%

6.228E+04

1.0%

1.964E+02

1.145E+02

6.525E-01

-1.2%

0.8%

0.4%

-2.1%

0.9%

-1.3%

1.0%

6.441E-01

-2.4%

5.999E-04

3.655E-04

8.048E-01

-1.8%

0.0%

0.4%

-3.0%

0.9%

-2.9%

1.0%

7.814E-01

-4.6%

1.564E-03

9.136E-04

260 .i

4.4%

-0.9%

0.4%

1.1%

0.9%

0.2%

1.0%

260.5

4.5%

244.3

8.3

272.0

3.7%

0.0%

0.4%

2.0%

0.9%

1.9%

1.0%

277.2

5.8%

255.9

8.5

20.6

6.3

2.8

13.1

8.7

19.4

9.2

39.9

14.0

3.1

2.4

5.9

7.5

9.0

7.9

23.0

2.8

-4 4

5 8

-6 1

6 7

-I0 5

8 8

-7 8

2.0

-7.0

4.6

-4.4

5.3

-ii .4

7.0

-9.5

0.001

-0.23

0.63

-0.23

28.1%

23.8%

0.001

-0.03

0.69

-0.03

30.9%

24.9%

Mean

M-76

tans

sigS

ranL

sigL

ranT

sigT
Tot.

T-76

H20

sigH

Mean

M-76

ranS

sigS

ranL

sigL
ranT

sigT

Tot.

T-76

H20

sigh

2.00

69.0

28.450 -80.530 8.037E+04

1.1%

0.0%

0.0%

-0.8%

9. 923E-01

-i .4%

0.2%

0.5%

-3.2%

281.6

2.3%

-0.2%

0.5%

2.3%

7.0

3.3

2.0

5.3

1.2

-5.4

3.7

-6.0

0.002 Mean

M-76

ranS

sigS
ranL
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0.5% 1.2% 1.1%

-0.8% -3.0% 2.1%

0.5% 1.3% 1.2%

7. 969E+04 9. 629E-01 287.5

0.2% -4.3% 4.5%

5.831E+02 4.485E-03 269.3

3. 542E+02 2. 729E-03 10.2

6.4 4.3 sigL

8.7 -II.3 -0.02 ranT

6.7 5.7 0.82 sigT

15.6 -10.1 -0.02 Tot.

T-76

45.7% H20

39.0% sigh

0.00 28.450 -80.530 1.021E+05 1.212E+00 291.5

70.0

0.8% -I.0% 1.2%

0.0% -0.1% 0.1%

0.0% 0.4% 0.4%

-0.8% -2.8% 2.0%

0.5% 1.1% 1.0%

-0.8% -2.9% 2.1%

0.5% 1.2% 1.1%

'I.013E+05 1.177E+00 297.6

0.0% -3.9% 3.3%

1.759E+03 1.307E-02 288.1

4.644E+02 3.457E-03 4.2

0.8 -0.6 0.000 Mean

M-76

-I.I -3.1 ranS.

1.3 2.8 sigS

5.8 -3.9 ranL

4.2 3.3 sigL
4.7 -7.0 -1.40 ranT

4.4 4.3 0.94 sigT

5.5 -7.6 -1.40 Tot.

T-76

80.5% H20

29.7% sigh

| _._ _



Standard Species Concentration Output Produced by the Input File Above:

****** Global Reference Atmospheric Model - 1995 (GRAM-95) ******

Species Concentration Data

MM/DD/YY = i/ 1/95 HH:MM:SS(UTC) = 0: 0: 0.0 Julian Day = 2449718.500

FI0.7 = 230.00 Mean FI0.7 = 230.00 ap Index = 20.30

Standard deviations of concentration variation may be a substantial fraction

(50% or more) of the mean value. Zero concentration values indicate no

estimate available.

Height

(km) Lati- Long. Concen- Number I Concen- Number

Time tude [E+W-] tration Density I tration Density

{sec) (deg) (deg) (ppmv) (#/m**3) J (ppmv) (#/m**3)

.................. +

0.000E+00 0 000E+00140.00 28.450 -80.530

0.0

138 .00 28 .450 -80 .530

1.0

136.00 28.450 -80.530

2.0

134.00 28.450 -80.530

3.0

132.00

4.0

28.450 -80.530

130.00

5.0

28.450 -80.530

0.000E+00 0

0.000E+00 0

6.406E+05 6

2.536E+05 2

1.934E+02 1

000E+00

000E+00

562E+16

598E+16

982E+13

0.000E+00 0 000E+00

0.000E+00 0 000E+00

0.000E+00 0 000E+00

6.443E+05 7 525E+16

2.447E+05 2 858E+16

1.764E+02 2 060E+13

.................. +

0.000E+00 0 000E+00

0.000E+00 0 000E+00

0.000E+00 0 000E+00

6.477E+05 8 691E+16

2.356E+05 3 162E+16

1.600E+02 2 147E+13

Species

0.000E+00 0.000E+00 H20

0.000E+00 0.000E+00 N20

0.000E+00 0.000E+00 CH4

8.956E+04 9.174E+15 N2

2.224E+03 2.278E+14 O

9.762E-06 1.000E+06 He

0.000E+00 0.000E+00 H20

0.000E+00 0.000E+00 N20

0.000E+00 0.000E+00 CH4

9.132E+04 1.067E+16 N2

2.331E+03 2.722E+14 O

8.562E-06 1.000E+06 He

O3

CO

CO2

02

A

H

O3

CO

CO2

02

A

H

0.000E+00 0.000E+00

0.000E+00 0.000E+00

0.000E+00 0.000E+00

9.312E+04 1.250E+16

2.446E+03 3.282E+14

7.453E-06 1.000E+06

H20 1 O3

N20 I CO

CH4 I CO2

N2 I O2

0 I A

He I H

0.000E+00 0.000E+00 I 0.000E+00 0.000E+00

0.000E+00 0.000E+00 I 0.000E+00 0.000E+00

0.000E+00 0.000E+00 I 0.000E+00 0.000E+00

6.508E+05 1.012E+17 i 9.497E+04 1.476E+16

2.263E+05 3.518E+16 I 2.570E+03 3.995E+14

1.443E+02 2.244E+13 J 6.433E-06 1.000E+06

0.000E+00 0.000E+0O i 0.000E+00 0.000E+00

0.000E+00 0.000E+00 I 0.000E+00 0.000E+00

0.000E+00 0.000E+00 I 0.000E+00 0.000E+00

6.535E+05 1.188E+17 I 9.688E+04 1.761E+16

2.167E+05 3.939E+16 I 2.705E+03 4.916E+14

1.294E+02 2.351E+13 J 5.503E-06 1.000E+06

0.000E+00 0.000E+00

0.000E+00 0.000E+00

0.000E+00 0.000E+00

6.559E+05 1.407E+17

2.069E+05 4.440E+16

1.151E+02 2.471E+13

+

H20

N20

CH4

N2

0

He

4- ....

H20

N20

CH4

N2

O

He

0 000E+00 0.000E+00

0 000E.00 0.000E+00

0 000E+00 0.000E+00

9 886E+04 2.121E+16

2 853E+03 6.121E+14

4 661E-06 1.000E+06

H20

N20

CH4

N2

O

He

O3

CO

CO2

O2

A

H

O3

CO

CO2

O2

A

H

O3

CO

CO2

O2

A

H

@. ....
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128.00

6.0

28.450 -80.530 0.000E+00 0.000E+00

0.000E+00 0.000E+00

0.000E+00 0.000E+00

6.580E+05 1.685E+17

1.969E+05 5.043E+16

1.017E+02 2.605E+13

126.00

7.0

28.450 -80.530 0.000E+00 0.000E+00

0.000E+00 0.000E+00

0.000E+00 0.000E+00

6.599E+05 2.041E+17

1.867E+05 5.776E+16

8.912E+01 2.756E+13

124.00

8.0

28.450 -80.530 0.000E+00 0.000E+00

0.000E+00 0.000E+00

0.000E+00 0.000E+00

6.616E+05 2.504E+17

1.764E+05 6.674E+16

7.737E+01 2.927E+13

122.00 28.450 -80.530

9.0

120.00 28.450 -80.530

i0.0

118.00 28.450 -80.530

ii .0

i16.00 28.450 -80.530

12.0

0 000E+00 0.000E+00

0 000E+00 0.000E+00

0 000E+00 0.000E+00

6 633E+05 3.113E+17

1 659E+05 7.785E+16

6 650E+01 3.121E+13

0 000E+00 0.000E+00

0 000E+00 0.000E+00

0 000E+00 0.000E+00

6 651E+05 3.927E+17

1 553E+05 9.169E+16

5 656E+01 3.339E+13

2.151E-01 1 617E+II

2.063E-04 1

4.693E-02 3

6.750E+05 5

1.450E+05 1

4.769E+01 3

551E+08

528E+I0

074E+17

090E+17

585E+13

......... +

2.314E-01 2.239E+II

2.174E-04 2.103E+08

6.193E-02 5.991E+I0

6.872E+05 6.648E+17

1.352E+05 1.308E+17

3.989E+01 3.860E+13

i14.00

13.0

28.450 -80.530 2.475E-01 3.125E+II

2.292E-04 2.893E+08

7.798E-02 9.844E+10

6.998E+05 8.834E+17

1.255E+05 1.584E+17

3.300E+01 4.165E+13

112.00 28.450 -80.530

14.0

0 000E+00 0 000E+00

0 000E+00 0 000E+00

0 000E+00 0 000E+00

1 009E+05 2 585E+16

3 016E+03 7 724E+14

3 905E-06 1 000E+06

H20 O3

N20 CO

CH4 CO2

N2 02

O A

He H

+ ...................... + ....

0.000E+00 0.000E+00 H20

0,000E+00 0.000E+00 N20

0.000E+00 0.000E+00 CH4

1.031E+05 3.189E+16 N2

3.198E+03 9.891E+14 O

3.233E-06 1.000E+06 He

0.000E+00 0.000E+00 H20

0.000E+00 0.000E+00 N20

0.000E+00 0.000E+00 CH4

1.055E+05 3.990E+16

3.402E+03 1.287E+15

2.643E-06 1.000E+06

0.000E+00 0.000E+00

0.000E+00 0.000E+00

0.000E+00 0.000E+00

1.080E+05 5.069E+16

3.635E+03 1.706E+15

2.131E-06 1.000E+06

O3

CO

CO2

O2

A

H

03

CO

CO2

N2 O2

O A

He H

+

H20 O3

N20 CO

CH4 CO2

N2 02

O A

He H

+

0.000E+00 0 000E+00

0.000E+00 0 000E+00 N20

0.000E+00 0 000E+00 CH4

1.108E+05 6 541E+16 N2

3.901E+03 2 304E+15 O

1.694E-06 i 000E+06 He

1.253E-03 9.419E+08 H20

5.302E+01 3.985E+13 N20

4.059E+01 3.051E+13 CH4

I.i19E+05 8.412E+16 N2

4.222E+03 3.174E+15 O

1.330E-06 1.000E+06 He

3.140E-03 3.038E+09

4.924E+01 4.764E+13

4.282E+01 4.142E+13

1.145E+05 I.I08E+17

4.615E+03 4.465E+15

1.034E-06 1.000E+06

+ ..................

7 868E-03 9.933E+09

4

4

1

5

7

+

H20 03

CO

CO2

O2

A

H

+

03

CO

CO2

O2

A

H

+

O3

CO

CO2

O2

A

H

.... + ....

03

CO

CO2

O2

A

H

O3

CO

CO2

O2

H20

N20

CH4

N2

O

He

H20

551E+01 5.745E+13 N20

769E+01 6.020E+13 CH4

183E+05 1.494E+17 N2

086E+03 6.420E+15 O

922E-07 1.000E+06 He

2,633E-01 4.414E+II I 1.972E-02 3.306E+I0 H20

2.419E-04 4.055E+08 I 4.186E+01 7.018E+13 N20

9.372E-02 1.571E+II I 5.609E+01 9.403E+13 CH4

7.104E+05 1.191E+18 I 1.231E+05 2.063E+17 N2
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1.154E+05 1.935E+17 I 5.629E+03 9.438E+15

2.686E+01 4.504E+13 I 5.965E-07 1.000E+06

110.00

15.0

108.00

16.0

106.00

17.0

28.450 -80.530

28.450 -80.530

28.450 -80.530

2 800E-01 6 391E+I]

2 552E-04 5 826E+08

1 126E-01 2 571E+II

7 159E+05 1 634E+18

1 043E+05 2 381E+17

2 136E+01 4 875E+13

3.026E-01 9.511E+II

2.706E-04 8.505E+08

1.194E-01 3.754E+II

7.228E+05 2.272E+18

9.381E+04 2.949E+17

1.679E+01 5.278E+13

.................. +

3 271E-01 1.445E+12

2 869E-04 1.268E+09

1 266E-01 5.595E+II

7 267E+05 3.211E+18

8 307E+04 3.670E+17

i 293E+01 5.710E+13

104.00 28.450 -80.530

18.0

102.00 28. 450 -80. 530

19.0

i00.00 28.450 -80.530

20.0

98.00 28. 450 -80. 530

21.0

96.00 28.450 -80.530

22.0

3 512E-01 2 211E+12

3 045E-04 1 916E+09

1 327E-01 8 352E+II

7 310E+05 4 601E+18

7 209E+04 4 537E+17

1 124E+01 7 075E+13

3 748E-01 3 374E+12

3 234E-04 2 911E+09

1 374E-01 1 237E+12

7 380E+05 6 643E+18

6 I03E+04 5 493E+17

1 124E+01 1 012E+14

4 000E-01 5 200E+12

3 436E-04 4 466E+09

1 423E-01 1 849E+12

7 446E+05 9 680E+18

4 996E+04 6 495E+17

1 122E+01 1 459E+14

.................. +

4 510E-01 8 392E+12

3 668E-04 6 825E+09

1 469E-01 2 733E+12

7 538E+05 1 402E+19

3 532E+04 6 571E+17

1 135E+01 2 I12E+14

5 085E-01 1 354E+13

3 916E-04 1 042E+I0

1 517E-01 4 037E+12

7 624E+05 2 029E+19

2 266E+04 6 033E+17

1 151E+01 3 064E+14

94.00 28.450 -80.530

O A

He H

H20 03

N20 CO

CH4 CO2

N2 O2

O A

He H

+

4.941E-02 1.128E+II

3.850E+01 8.789E+13

6.596E+01 1.506E+14

1.283E+05 2.929E+17

6.214E+03 1.419E+16

4.381E-07 1.000E+06

8.582E-02 2.697E+II

3.408E+01 1.071E+14

8.406E+01 2.642E+14

1.336E+05 4.199E+17

6.931E+03 2.178E+16

3.182E-07 1.000E+06

1.491E-01 6.586E+II

3.016E+01 1.332E+14

1.071E+02 4.733E+14

1.391E+05 6.146E+17

7.727E+03 3.414E+16

2.263E-07 1.000E+06

2.254E-01 1.419E+12

2.638E+01 1.660E+14

1.356E+02 8.535E+14

1.451E+05 9.135E+17

8.147E+03 5.128E+16

1.589E-07 1.000E+06

+ ..................

2.967E-01 2.671E+12

2.281E+01 2.053E+14

1.705E+02 1.535E+15

1.519E+05 1.367E+18

8.150E+03 7.336E+16

1.1lIE-07 1.000E+06

3.906E-01 5.078E+12

1.972E+01 2.564E+14

2.144E+02 2.787E+15

1.591E+05 2.069E+18

8.132E+03 1.057E+17

7.693E-08 1.000E÷06

4.641E-01 8.635E+12

1.621E+01 3.015E+14

2.442E+02 4.543E+15

1.669E+05 3.106E+18

8.227E+03 1.531E+17

5.375E-08 1.000E+06

÷ ....

H20 03

N20 CO

CH4 CO2

N2 02

O A
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58.0

22,00

59,0
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APPENDIX C

List of Diagnostic and Progress Messages

If a major problem arises in the progress of a run, one of the following diagnostic

messages will be printed both to the standard formatted output file and to the screen unit.

They are listed alphabetically.

1. "Error exit from trajectory

file in Subroutine timestep."

This fatal error is generated from the timestep

subroutine of the models.f file when the trajectory

option has been chosen and an error is
encountered while reading a record of the

trajectory file. Correct the error before

rerunning the program.

. "Error in Subroutine setup,

with input: ius=iiiii, iopr=
iiiii, nrl =iiiiiiiiii, month=

iii, ic=aa, mi=iii, ih=iiii
ix=iiii iiii iiii iiii iiii iiii iiii

iiii iiii iiii, iex--iiii ip=iiii
iiii iiii iiii iiii, id--iifi iiii

iiii iiii iiii, it=iiii iiii iiii iiii
iiii ndata=iiiiii iiiiii ...iiiiii"

This fatal error is generated from the setup

subroutine of the initial.f file when an attempt
to read any atmosdat record beginning with

a code fails. To aid the user in troubleshooting,

various parameters are output along with the data
read from the atmosdat record. Correct the

problem before rerunning the program.

. "Error reading file ii in
Subroutine rtran at entry

point aaa..."

This fatal error is generated from the rtran
subroutine found in the gramsubs.f file when the

program reads data from an erroneous atmosdat

file. Replace or repair the file, then rerun.

. "Error termination reading
atmosdat file in MAPINIT"

This fatal error is generated from the mapinit

subroutine in the speconc.f file when an error

occurs in reading a record-from the MAP 31 data

of the atmosdat file. Repair the record and

the file before rerunning the program.

5o

.

"Error termination while

reading file in CONCINIT
routine."

"Height error reading AFGL
concentration data."

- This fatal error is generated from the concinit

subroutine in the speconc.f file when an error

occurs in reading a record from either the

LaRC or AFGL portion of the atmosdat file.

Correct the underlying problem before rerunning.

- This fatal error is generated from the concinit
subroutine of the speconc.f file when invalid

heights are invoked for reading the AFGL data

from the atmosdat file. Correct the underlying

problem before rerunning.
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7,

,

.

10.

11.

12.

13.

14.

"Height error reading LaRC
water data."

"Height error reading OX
data: month = ii Level - iii"

"Premature end-of-file found

on unit ii called from

Subroutine rtran at entry

point aaa..."

"Premature EOF reading
atmosdat file in MAPINIT"

"Premature EOF while

reading file in CONCIN1T
routine."

"Pressure level error reading
MAP aaa data Month = ii

Level = ii"

"Unexpected exit from

trajectory file with h<0 in

Subroutine timestep."

"Unit number conflict in

Subroutine chekunit: iopp =

iii iopt = iii ius = iii iuc =

iii lug = iii Error number =
iii"

This fatal error is generated from the concinit
subroutine of the speconc.f file when invalid

heights are invoked for reading the LaRC data

from the atmosdat file. Correct the underlying

problem before rerunning.

This fatal error is generated from the mapinit

subroutine in the speconc.f file when errors

occur in the MAP 31 oxygen values of the

atmosdat file. Correct them before rerunning.

This fatal error is generated from the rtran
subroutine found in the gramsubs.f file when the

program finds the atmosdat file shorter than

expected. Replace or repair the file, then rerun.

This fatal error is generated from the mapinit

subroutine in the speconc.f file when an end-of-file

is encountered while reading a record from the

MAP 31 data of the atmosdat file. Repair the

record and the file before rerunning the program.

This fatal error is generated from the

concinit subroutine of the speconc.f file when

an end-of-file is encountered while reading a

record from either the LaRC or AFGL portion of
the atmosdat file. Repair the record and file,
then rerun.

This fatal error is generated from the mapinit

subroutine in the speconc.f file when errors occur

in the MAP 31 parameter values of the atmosdat
file. Correct the values and the file before

rerunning the program.

This fatal error is generated from the timestep

subroutine in the models.f file when the trajectory

option has been chosen and a height below sea

level is encountered during reading of a record in

the trajectory file. Correct the error before

rerunning.

This fatal error is generated from the chekunit
subroutine in the initial.f file when the

program finds conflicts in any assigned unit
number. Choose different unit numbers to

resolve any conflict, then rerun the program.
Conflicts occur if any of the unit numbers are

duplicates or conflict with reserved unit numbers

(e.g., 5 or 6). Conflicts must not exist for any of the
unit numbers between iug and iug+14.



During thecourseof a run, someof the following diagnosticandprogressmessages
will beprinted to thechosenscreenunit only:

o "Below GUACA height and

iug = 0"

This fatal error is generated from the atmod
subroutine in the models.f file when the "current"

height is below 27 km but the GUACA option
has been set to zero. Correct the discrepancy

before rerunning the program.

2. "Computing data" - This comment originates in the gram95.f file
after the data is initialized at the start of the run.

3. "Concentration data written to

file aaa..."
This comment originates in the gram95.f file

when the entire run is complete, if the option to

output species concentrations has been chosen.

. End-of-file error on GUACA

file, unit= iii"
This fatal error is generated from the guacard

subroutine if a premature end-of-file is encountered

on any of the GUACA input files.

5. "End-of-file reading scale
data"

This fatal error is generated from the scalinit
subroutine of the initial.f file when end-of-file

(EOF) is reached during the reading of the

variable-scale random perturbation model data

from an erroneous atmosdat file. Repair or

replace the file before rerunning.

6. "Error in GUACA pathname

found in Subroutine guainit"

This fatal error is generated from the guainit

subroutine of the guaca.f file at initialization

when either the guapath parameter equals

zero or it is longer than 64 characters. Correct

either situation before rerunning if the GUACA
data base is to be invoked.

7. "Error in random option" This fatal error is generated from the init

subroutine of the initial.f file when the iopr

parameter has been set to a value which is

neither 1 nor 2. If perturbed values are desired
as well as mean values of the standard output

parameters, set iopr to 1 and rerun. If only mean

values of the parameters are desired, set iopr to 2
and rerun.

o "Error opening file ! ! status=
iii unit= iii aaa..."

This fatal error is generated from the guainit

subroutine of the guaca.f file at initialization when

an attempt fails to open one of the file units
from which the GUACA data will be read. To aid

the user, both the unit number and pathname

are output. Refer to the operation or FORTRAN

manuals of the client system to determine the
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9. "Error openingfile!! Status=
iii Unit= iii Path=aaa..."

10. "Error openingGUACA
scratchfile, status= iii"

11. "Error or EOF reading 1st
trajectoryinput"

12. "Error readinginput data
file in Subroutineinit."

13. "Exit with input dataEOF
in subroutineinit."

14. "Filled in iii.., missing
sigmas.('

15. "Filled in iii.., missing
temperatures."

meaningof the statusnumber,thencorrect the
underlyingcausebeforererunningtheprogram.

This fatal error is generatedfrom the setup
subroutineof the initial.f file whenanattemptto
opentheatmosdatfile fails. It differs slightly
from theforegoingerror to aid theuser,but
again,the unit numberassignedto the atmosdat
file andthepath to it areoutput.Refer to
the operationor FORTRAN manualsof theclient
systemto determinethe meaningof the status
numberhowever,thencorrectthe underlying
causeof theerrorbeforererunningthe program.

This fatal error is generatedfrom the guacard
subroutineof theguaca.ffile whenanerroroccurs
in openingtheGUACA scratchfile. Refer to the
operationor FORTRAN manualsof theclient
systemto determinethe meaningof the status
number,thencorrectthe underlyingcausebefore
rerunningtheprogram.

This fatal error is generatedfrom the init
subroutineof the initial.f file whenthe trajectory
optionhasbeenchosenandthe file pointedto
with thetrapathparametereither doesnot exist,
is emptyof records,or therecordshold
inappropriatedata.Correctthe errorbefore
rerunningtheprogram.

This fatalerror is generatedfrom the init
subroutineof the initial.f file whenanyone of
the6 pathvariableshavebeenincorrectly
identified or formulated.Correct theerror in
theappropriatepathvariablebeforererunning.

This fatal error is generatedfrom the init
subroutinein theinitial.f file whenanunexpected
endof file is reachedasone of thepathparameters
arereadby theprogram.Correcttheerror before
rerunningtheprogram.

This commentoriginatesin theguafix subroutine
of theguaca.ffile when missing sigmas are found

at any level of the GUACA data base and

replaced by the program.

This comment originates in the guafix subroutine

of the guaca.f file when missing temperatures are
found in the GUACA data base above 70 mbar and

replaced by the program.
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16. "Filled in iii.., missing
winds."

17. "Finished computations.
Formatted output written to
file aaa..."

18. "Finished GUACA

initialization"

19. "Finished SETUP routine"

20. "Finished profile, starting
next with nrl = iii..."

21. "First random number out

of range."

22. "Fixing GUACA data"

23. "Height error on scale
data: nnnnn.n"

24. "Illegal GUACA file block
size, iblwd=iiii"

This comment originates in the guafix subroutine

of the guaca.f file when missing winds are
found in the GUACA data base above 70 mbar and

replaced by the program.

- This comment originates in the gram95.f

subroutine/file at the completion of the entire run.

- This comment originates in the init subroutine

of the initial.f file immediately after the GUACA
data base has been initialized.

This comment originates in the init subroutine

of the initial.f file immediately after the setup

subroutine of the initial.f file has completed its
actions.

This comment originates in the gram95.f main

program file at the end of one run and the

beginning of the next when a new random number
seed is read in.

This fatal error is generated from the randinit
subroutine of the initial.f file when the random

option was chosen but the initial seed was

selected outside of the range, 1 to 9 x 108.

Correctly choose the initial seed before rerunning.

This comment originates in the guainit

subroutine of the guaca.f file at the call to the

guafix subroutine, which accomplishes various

quality control checks and makes appropriate
corrections to the loaded GUACA data.

This fatal error is generated from the scalinit

subroutine of the initial.f file when a height

error is encountered after reading the

variable-scale random perturbation model data
from the atmosdat file. Correct the error

before rerunning the program.

This fatal error is generated from the guacard

subroutine of the guaca.f file when the parameter
iblwd is > 0 but is < 46 or > 512. Correct

the error before rerunning the program.
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25.

26.

27.

28.

29.

30.

"Month out of rangeto read
GUACA data."

"Normal exit from trajectory
file in Subroutinetimestep."

"Note: Exit height
incrementationwith h<0
in Subroutine timestep."
Plusundersomeconditions:
"Note: nt= iii, nmax= iii"

"Open error for GUACA
unit, status,file=iiii iiii
aaa..."

"Openingandreading
GUACA files"

"Readerror onGUACA file,
unit,rec,recl,iostat=iiiiiiii
iiii iiii"

31. "Read error on scaledata"

This fatalerror is generatedfrom the init
subroutineof the initial.f file whenthemn parameter
hasbeenchosenoutsidethe rangeof 1-12.
Chooseanmn valuewithin therangeof 1- 12
beforererunning.

This commentoriginatesin the timestep
subroutineof themodels.ffile whenthe trajectory
optionhasbeenchosenandthe endof the
trajectoryfile hasbeenreached.

This fatal error is generatedfrom the timestep
subroutineof themodels.ffile when
automaticincrementationof the profile option
yields a heightvaluemore than5 metersbelow
sealevel. If theheightvalue is lessthan 5 meters
belowsealevel, the nt and nmax values are not

output. This error message occurs because of a

discrepancy between the input values of dhgt and
nmax, and should be resolved before rerunning.

This fatal error is generated from the guacard

subroutine of the guaca.f file when an error occurs

in opening the GUACA file from either the
"pre-read" or normal read code section. Refer to

the operation or FORTRAN manuals of the client

system to determine the meaning of the status
numbers, then correct the underlying cause before

rerunning the program.

This comment originates in the guainit

subroutine of the guaca.f file before the opening
of the fide unit numbers from which the

GUACA data will be loaded.

This fatal error is generated from the guacard

subroutine of the guaca.f file when an error occurs

in reading the GUACA file data. Refer to the
FORTRAN manuals of the client system to

determine the meaning of the status number,

then correct the underlying cause before rerunning

the program.

This fatal error is generated from the scalinit
subroutine of the initial.f file when reading

erroneous variable-scale random perturbation

data from the atmosdat file. Correct the error

before rerunning the program.
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32. "Specialoutputwritten to file
aaa..."

This commentoriginatesin thegram95.fmain
programfile at thecompletionof theentirerun
if theoptionfor thespecialformat output
hasbeenchosen.

33. "Starting GUACA
initialization"

This commentoriginatesin the init subroutine
of the initial.f file immediatelybeforethe
GUACA databaseis initialized.

34. "Starting SETUP routine" This commentoriginatesin the init subroutine
of the initial.f file immediatelybeforethesetup
subroutineof the initial.f file is invoked.

35. "Year out of rangeto read
GUACA data."

This fatal error is generatedfrom the init
subroutineof the initial.f file whentheiguayr
parameterhasbeensetto a value of 2 andthe
iyr parameterhasbeenchosenoutside the range
85 - 91. Either resetiguayr to a valueof 1, or
chooseiyr in therange85 - 91 before
rerunning.
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APPENDIX D

List of Subroutines, Functions, and Common Blocks

List of Subroutines:

Subroutine In File Called by Description

afglconc speconc concvals Manipulates the AFGL
concentration data.

atmod models timestep Principal computation of

pressure, density,

temperature and winds.

Block Data initial

Initval
none Initializes common block

variables.

caljday gramsubs init, tme Computes Julian day.

chekunit initial init Checks for conflicts in

unit numbers.

concinh speconc init Reads and initializes all

concentration data.

concvals speconc atmod Computes concentration

values, including the

time changes to date.

corlat gramsubs pertrb Computes perturbation
model coefficients.

fair gramsubs atmod Fairs thermodynamic and

wind parameters between

middle atmosphere and
MET regions (90-120 km).

fair5 metprog j70 Fairs between region
below and above 500 km.

guacard guaca guainit Open files and reads
GUACA CD data.

gauss metprog jac Calculates gaussian

quadrature.

gterp gramsubs mapmod Evaluates middle

atmosphere zonal-mean

data by linear

interpolation.

PRECEDING PAGE BLANK NOT FILMED '"
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Subroutine

guaf=

guainit

guaintrp

guamod

init

inter2

interw

interz

intr25

intruv

intrw

j70

In File

guaca

guaca

guaca

guaca

initial

gramsubs

gramsubs

gramsubs

gramsubs

gramsubs

gramsubs

metprog

Called bv

guainit

init

guamod

atmod

main (gram95)

mapmod

intruv, intr25,

mapmod

rterp, mapmod

atmod, randinit

atmod, randinit

atmod, pertrb,
randinit

jacch

Description

Corrects problems with

GUACA CD data arrays.

Drives the opening,
reading, and fixing of
GUACA CD data.

Interpolates GUACA data.

Calculates means and

standard deviations from

GUACA data.

Reads and initializes

input data.

Linearly interpolates

vertically between three
thermodynamic variables

with hydrostatic relation

for pressure.

Linearly interpolates

vertically between
horizontal wind

components.

Linearly interpolates

vertically between three

variables, without using

the hydrostatic relation.

Calculates large-scale
fractional variances.

Calculates standard

deviations for random

horizontal wind

components.

Calculates standard

deviation for random

vertical wind component.

Initializes data for/acchia

(MET) region.
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Subrguting

jac

jacch

jacmod

larcwat

mapconc

mapinit

mapmod

pdtuv

pertrb

rcarin

rcarry

randinit

rig

rterp

In File

metprog

metprog

models

speconc

speconc

initial

models

gramsubs

gramsubs

random

random

initial

models

gramsubs

CalledbY

j70

jacmod

atmod

concvals

concvals

init

atmod

mapmod

atmod

randinit

pertrb,randinit

main (gram95)

guamod,timestep

atmod,randinit

Description

Calculatesmolecular
weight, density and
temperaturein MET
region.

CalculatesMET region
parametersexcept winds.

Drives all MET region
calculations.

Calculatesmoisture from
LaRC data.

Drives determinationof
MAP concentrationdata.

Readsand initializes
MAP concentrationdata.

Calculatesthermodynamic
andwind variablesin
MAP region.

Interpolates stationary
perturbations.

Calculatesthermodynamic
andwind random
perturbation values.

Initializes random
numbergenerator.

Generatesrandom
numbers.

Initializes random
perturbationmodels.

Calculates distance from

Earth's center and

acceleration of gravity.

Calculates standard

deviations of random

thermodynamic
perturbations.
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Subroutine

rtran1

scalinit

setup

shift2

shift4

slv

slvh

stdatm

timestep

tinf

tme

wind

zinterp

In File

gramsubs

initial

initial

initial

initial

metprog

metprog

gramsubs

models

metprog

metprog

gramsubs

guac a

Called by

setup

init

init

guainit

guainit

j70

j70

atmod

main (gram95)

j70

j70

jacmod

guamod

Description

Reads first portions of
atmosdat file data.

Reads and initializes

variable-scale random

perturbation values.

Drives reading of first

portion of atmosdat file
data and initializes values.

Interchanges 2 bytes of

integer*2 data.

Reverses byte order of

integer*4 data.

Computes seasonal-
latitudinal variation of

density in MET region.

Computes seasonal-
latitudinal variation of

helium number density
above 500 kin.

Evaluates'U.S. Standard

Atmosphere variables.

Controls evaluation of all

variables at new timestep.

Calculates exospheric

temperature in MET

region.

Calculates solar variables.

Calculates MET region

wind components.

Interpolates variables

from pressure levels in

GUACA region.

1 Includes two entry points, rtranl and rtran2.
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List of Functions:

Function

correl

dedt

d2edt2

gascon

mixrat

molwt

ppnd

tdbuck

temp

valint

valreal

valz

wexler

ztoH

In File

gramsubs

speconc

speconc

guaca

models

metprog

random

speconc

metprog

speconc

initial

speconc

speconc

guaca

Called bv

pertrb

atmod, d2edt2

atmod

guafix, zinterp

atmod

gauss, jac

pertrb, randinit

atmod, guafix

gauss, jac

afglconc

guacard

afglconc

atmod, dedt, d2edt2,

gascon, guafix,
tdbuck

zinterp

Description

Calculates distance correlations.

Calculates Wexler formulation

of saturation vapor pressure
First derivative.

Calculates Wexler formulation

of saturation vapor pressure
second derivative.

Calculates gas constant.

Calculates water vapor

volume mixing ratio.

Calculates molecular

weight of air at a height.

Calculates normal

distributed random values.

Calculates dewpoint

temperatures.

Calculates temperatures
above 90 km.

2-D height-latitude

interpolation of the
concentration values,

logarithmically.

Converts scale factors of

GUACA data from

integer to real form.

1-D height interpolation
of concentration values,

logarithmically.

Calculates Wexler

formulation for

saturation vapor pressure.

Converts from geometric

to geopotential height.

109



List of Common Blocks:

Common Block

afglcom

comper

concom

cotran

datacom

dircom

guacom

iotemp

iucom

jaccon

larccom

map31 corn

pathname

pdtcom

RCSET1

readcom

scalecom

speccom

timed

vert

wincom

Used in

afglconc, Block Data Initval, concinit, concvals

atmod, guamod, jacmod, main (gram95.f), mapmod, pertrb

atmod, concvals

rtran, setup

atmod, main

guacard, guainit, main

Block Data Initval, guainit, guamod

atmod, guamod, init, jacc, jacmod, main, mapmod,
pertrb, randinit, rtran, setup, timestep, wind

atmod, chekunit, guacard, guafix, guainit, guamod, init, jacmod,
main, mapmod, randinit, rtran, setup, timestep

atmod, jacmod, main

Block Data Initval, concinit, concvals, larcwat

mapconc, mapinit

init, main, setup

atmod, mapmod, randinit, setup

rcarin, rcarry

guacard, main

atmod, init, pertrb, randinit, scalinit

atmod, main

atmod, guamod, init, jacmod, main, mapmod, pertrb, randinit, setup,

timestep

atmod, guamod, init, jacmod, main, mapmod, pertrb, randinit,
scaleinit

atmod, guamod, jacmod, main, mapmod, pertrb, wind
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APPENDIX E

Example Application of GRAM-95 as Subroutines in Another Main Driver

For many applications, it is desirable to use GRAM-95 in the form of subroutines in another

program. For example, the main driver program may be a trajectory calculating program, for which

GRAM-95 is to provide the atmospheric density and winds that are used to update the trajectory

positions (or to provide the densities and temperatures used to compute heat loads, etc.). The

following sample program, called "gramtraj.f' (and provided along with the regular GRAM-95 code

files), serves as an illustration of how to build such an application program. The following discussion

describes the various features of the example gramtraj.f code, which is very similar to the gram95.f
code.

The sample code consists of a dummy driver (lines GRMD 1 through GRMD 66), a dummy

subroutine "setipos" to initialize the position (lines STIP 1 through STIP 13) and a dummy
subroutine "newpos" to update the position and velocity, if necessary (lines NEWP 1 through

NEWP 38). The gramtraj subroutine for actual incorporation into a user-provided main (lines

GRMT 1 through GRMT126) uses arguments: (1) ifirst--a parameter to trigger initialization and to

be used as a return code to trigger various desired functions in the driver program, (2) ctime--the

current elapsed time (seconds), (3) chgt--the current height (km), (4) clat--the current latitude

(degrees, North positive), and (5) clon--the current longitude (degrees, East positive).

Values of the atmospheric variables computed by GRAM can be passed to other subroutines

or output to storage devices from within the gramtraj subroutine (see comment starting at line
GRMT 80).

Within the gramtraj subroutine, the real variables n2ond and n2nd and the character variables

dirsep and endsep must be explicitly declared (lines GRMT 11, GRMT 12, and GRMT 13), since

these do not follow the FORTRAN conventions for integer or real variables. The common blocks

iotemp, iucom, timeo, dircom, wincom, vert, datacom, speccom, jaccon, and comper must be included

(lines GRMT 14 through GRMT 31). GRAM uses common blocks like extended argument lists for

subroutines (see appendix D) as a means of passing variable values among the subroutines and

between the main driver and the subroutines. Like subroutine argument lists (in which different

variable names may be used in the subroutine definition and in the subroutine calling statement), the

names of the variables in the common block statements sometimes change from one subroutine to

another. As shown in the gramtraj.f code, all unnecessary variables (i.e., those not actually used in

this main driver) have been identified by using dummy names (dummyx for real variables not needed

and idummyx for integer variables not needed). This use of dummy variable names is a way of

avoiding problems of duplicate variable names being used both as a global variable (one defined in a

common block) and as a local variable (one intended to be defined within a specific subroutine only).
Dummy variable names are also used in this way in some (but not all) of the common block

declarations within the GRAM subroutines. In the actual GRAM-95 main driver (gram95.f) code,

the common blocks have the global variables declared with their actual names rather than the dummy
names used here.

The variables used in the sample gramtraj.f code are:

lswap, iblwd, irlbw, direp, and endsep - parameters that can be set for your particular system, in

order to be able to read the GUACA data in the form that it appears on the GUACA-CD (see
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section 4.7). These values are set to those required for SGI IRIX in the following example code

(lines GRMT 38 through GRMT 47).

iur - the unit number for reading the input data file (see section 4.4 and appendix B), used also for

reading subsequent random number initial seed values (line GRMT103).

lopt - the trajectory input option (see section 4.4 and appendix b). The value is set to 0 (GRMT 59)

so that the positions will not be read in from a trajectory file, but will be computed from within this

main program.

lopr - random perturbation option (see section 4.4 and appendix B). No further random number
seeds will be read in (GRMT 87), if the iopr value was set to 2 in the input data file.

nrl - the random seed values read from unit iur.

nl, phil, thetl - the starting position coordinates of initial height (km), latitude (degrees, North

positive), and longitude (degrees, East positive).

ho, phio, theto - the initial height, latitude, and longitude values, saved (GRMT 60 through GRMT

62) for later resetting the initial position if cycling back to do multiple trajectories within one run

(GRMT107 through GRMT109).

h, phi, thet- the "current position" height, latitude, and longitude, initially equal to the starting
position, used to begin the cycle in which hi, phil, thetl becomes the "previous position" and h, phi,

and thet are updated to the "current position."

elt - the elapsed time (seconds) from the original (initial) position and the current position.

flelt, dhgt, dphi, dthet - the time displacement (seconds), and the increments in height, latitude, and

longitude used to update the new elapsed time from the previous elapsed time and to update the

previous position to the current position (GRMT 74 through GRMT 79).

nt, nmax - the current counter number for the trajectory position, and the maximum value this

counter can achieve. Processing terminates if nt _> nmax is encountered (GRMT 86).

nmore - a code returned by the timestep subroutine if trajectory position calculations should be
terminated for other reasons (GRMT 86).

The variables declared in the common blocks wincom, vert, datacom, speccom, jaccon, and

comper are potential variables for use on output or as passing as input to other subroutines from this
main driver (see comment at GRMT 80 and section 4.6).

A simplified outline for the functions required to be performed in the main driver program is:

1. Initialize .the time and position GRMD 18

2. Set if'trst = I and call gramtraj to read the GRAM input file and

initialize the GRAM atmospheric data GRMD 29-30

3. Initialize the trajectory velocity (or position displacement), if

necessary GRMD 35
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4. Set ifirst = 0 andstart trajectorycycle GRMD 39

5. Updatethe time, position (andvelocity or displacementvalues,if
necessary)at each step GRMD 44

6. Call gramtraj to evaluatethe GRAM atmosphericdataat the next
position GRMD 48

7. If if'trstreturncodeis 0, cycle to nextposition GRMD 53

8. If if'trst returncodeis -1, reinitialize theposition (reada newrandom
numberseedin gramtraj)and thencycle to nextposition GRMD 54-61

9. Terminateprogramfor anyothervalueof returncodeifirst GRMD 65

Input options allow all of theoutput files that aregeneratedby the GRAM-95 subroutinesto
besuppressedif all of theoutputvariablehandlingis to bedonein the main program.This is
accomplishedby settingthe following valuesin the input datafile (seeappendixB): iup = 0
suppressesthe standardformattedoutput file; iuc = 0 suppressesthe speciesconcentrationoutput
file; and iopp = 0 suppressesthe specialformattedoutput file. Progressand diagnosticmessages
(seeappendixC) that would normally be routedto thestandardformattedoutput file aresent to the
screenunit (iu0) if iup = 0 is selected.

Listing of Example Main Driver Program (gramtraj.f) Using GRAM-95 as Subroutines

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Dummy GRAM driver program using the gramtraj subroutine version:

To use gramtraj as a subroutine, the user should strip out this

dummy driver, using instead the real driver program (e.g., a

trajectory code). The dummy subroutines setipos and newpos

(to set the initial position and update the position) should

also be stripped out and replaced by position initialization

and updating operations in the trajectory program. The

subroutine gramtraj should be retained, to compute the

atmospheric variables. Any output of the atmospheric variables

(or passing of their values to other subroutines) should be

done from within the gramtraj subroutine (see comments in

the gramtraj code).

Initialize the time (sec) and position (height, km; latitude,

deg N; longitude, deg E).

Call setipos (ctime,chgt,clat,clon)

ifirst is used as a parameter to trigger GRAM initialization

(ifirst = I), and to be used as a return code to trigger any

desired actions by the main program. In this example, ifirst

= 0 causes recycle to next position; ifirst = -I causes

re-initialization of position (and velocity) values;

ifirst < -i causes the program to terminate.

Initialize the atmospheric variables with the gramtraj routine.

ifirst = 1

Call gramtraj(ifirst,ctime,chgt,clat,clon)

GRMD l

GRMD 2

GRMD 3

GRMD 4

GRMD 5

GRMD 6

GRMD 7

GRMD 8

GRMD 9

GRMD I0

GRMD I 1

GRMD 12

GRMD 13

GRMD 14

GRMD 15

GRMD 16

GRMD 17

GRMD 18

GRMD 19

GRMD 20

GRMD 21

GRMD 22

GRMD 23

GRMD 24

GRMD 25

GRMD 26

GRMD 27

GRMD 28

GRMD 29

GRMD 30

GRMD 31
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

2O

Initialize the trajectory velocity (or position displacement)

values (if initialization is necessary).

Call newpos(ifirst,ctime,chgt,clat,clon,dtime,dhgt,dlat,dlon)

Begin cycle of positions and atmospheric values.

ifirst = 0

Update the velocity (or position displacement) values and the

time and position values.

Call newpos(ifirst,ctime,chgt,clat,clon,dtime,dhgt,dlat,dlon)

Evaluate the atmospheric parameters at the new position.

Call gramtraj(ifirst,ctime,chgt,clat,clon)

Repeat the cycle or terminate, depending on the return value

of the parameter ifirst.

If (ifirst.eq.0)Goto 20

If (ifirst.eq.-l)Then

Re-initialize the velocity or position displacement values

(if necessary).

Call newpos(ifirst,ctime,chgt,clat,clon,dtime,dhgt,dlat,dlon)

Goto 20

Endif

Terminate for any other values of ifirst.

End

C ......

C

C° o o

C

C

C

Subroutine setipos(ctime,chgt,clat,clon)

Dummy subroutine to set initial time (sec) and position (height),

km; latitude, degrees, North positive; longitude, degrees, East

positive).

The following test input is for the reference case (appendix B).

ctime = 0.

chgt = 140.
clat = 28.45

clon = -80.53

Return

End

C

C

C

C

C

C

C

C

C

Subroutine newp°s(ifirst'ctime'chgt'clat'cl°n'dtime'dhgt'dlat'

& dlon)

Dummy subroutine to update the position and velocity.

Initialize the velocity (or position displacement) if ifirst is

not zero. dtime = time step (sec), dhgt = height increment per

time step (km), dlat = latitude increment per time step (deg N),

dlon = longitude increment per time step (deg E).

The following test input is for the reference case (appendix B).

If (ifirst.ne.0)Then

dtime = i.

GRMD 32

GRMD 33

GRMD 34

GRMD 35

GRMD 36

GRMD 37

GRMD 38

GRMD 39

GRMD 40

GRMD 41

GRMD 42

GRMD 43

GRMD 44

GRMD 45

GRMD 46

GRMD 47

GRMD 48

GRMD 49

GRMD 50

GRMD 51

GRMD 52

GRMD 53

GRMD 54

GRMD 55

GRMD 56

GRMD 57

GRMD 58

GRMD 59

GRMD 60

GRMD 61

GRMD 62

GRMD 63

GRMD 64

GRMD 65

GRMD 66

STIP 1

STIP 2

STIP 3

STIP 4

STIP 5

STIP 6

STIP 7

STIP 8

STIP 9

STIP I0

STIP Ii

STIP 12

STIP 13

NEWP l

NEWP 2

NEWP 3

NEWP 4

NEWP 5

NEWP 6

NEWP 7

NEWP 8

NEWP 9

NEWP 10

NEWP 11

NEWP 12
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C

C

C

C

C

dhgt = -2.

dlat = 0.

dlon = 0.

Else

Update the position (and velocity, if necessary), if ifirst

is zero.

crime = ctime + dtime

chgt = chgt + dhgt

clat = clat + dlat

clon = clon + dlon

Treat special case when trajectory passes over the poles.

If(Abs(clat).gt.90.)Then

clat=Sign(180.-Abs(clat),clat)

clon=clon+180.

dlat = -dlat

Endif

C Treat special cases if longitude outside +/- 180 degrees.

If(clon.lt.-180.)clon=clon+360.

If(clon.ge.180.)clon=clon-360.

Endif

Return

End

C .......

NEWP 13

NEWP 14

NEWP 15

NEWP 16

NEWP 17

NEWP 18

_P 19

NEWP 20

NEWP 21

NEWP 22

NEWP 23

NEWP 24

NEWP 25

NEWP 26

NEWP 27

NEWP 28

NEWP 29

NEWP 30

NEWP 31

NEWP 32

NEWP 33

NEWP 34

NEWP 35

NEWP 36

NEWP 37

NEWP 38

C

C

C

C

C

C

C

C

C

C

Subroutine gramtraj(ifirst,ctime,chgt,clat,clon)

GRAM subroutine for use in user-provided trajectory program:

ifirst = parameter to trigger initialization and to be used as

a return code to trigger any desired actions by the

main program.

crime = current elapsed time from beginning of trajectory (sec).

chgt = current height (km).

clat = current latitude (degrees, North positive).

clon = current longitude (degrees, East positive).

Real n2ond,n2nd

Character*l dirsep,endsep, termchar

Character*16 scrstat,sysform

Common /iotemp/idummyl,phil,phi,dummyl(10),idummy2(3),hl,

& dummy2(2),h,dummy3(3),idummy3(2),nmore,dummy4(2),idummy4,elt,

& dummy5(19)

Common /iucom/idummy5, iur, idummy6(3),iopr

common /timeo/thet,thetl,idummy7(2),dummy6,dphi,dthet,dhgt,nmax,

& delt,iopt,nt,idummy8,nrl,dummy7,ho,phio,theto, dphio

Common /dircom/dirsep, endsep, termchar, scrstat,sysform

Common /readcom/iswap, iblwd, irlbw, nhdr

Common/wincom/dh,dummy8(4),ugh,vgh,th, dummy9(2),ph,wgh,dummya

Common /vert/dummyb(2),wrh, swh,dummyc(29)

Common /datacom/pgh, dgh, tgh,pghp,dghp, tghp,uh,vh,wh,php,dhp, thp,

& eofT,rhov, tdgh, rhp, seofT,srhov, stdgh, srhp

Common /speccom/ppmh2o,ppmn2o,ppmch4,ppmn2,ppmo, ppmhe,ppmo3,

& ppmco,ppmco2,ppmo2,ppmar,ppmh,h2ond,n2ond, ch4nd,03nd,cOnd,co2nd

Common /jaccon/n2nd, o2nd,ond, arnd,hend,hnd,dummyd

Common/comper/sph, sdh, sth,prh,drh, trh,urh, vrh, sub, svh, dummye,

& prhs,drhs,trhs,urhs,vrhs,prhl,drhl,trhl,urhl,vrhl,

& sphs,sdhs,sths,suhs,svhs,sphl,sdhl,sthl,suhl,svhl

Initialize everything if ifirst = i.

GRMT 1

GRMT 2

GRMT 3

GRMT 4

GRMT 5

GRMT 6

GRMT 7

GRMT 8

GRMT 9

GRMT i0

GRMT ii

GRMT 12

GRMT 13

GRMT 14

GRMT 15

GRMT 16

GRMT 17

GRMT 18

GRMT 19

GRMT 20

GRMT 21

GRMT 22

GRMT 23

GRMT 24

GRMT 25

GRMT 26

GRMT 27

GRMT 28

GRMT 29

GRMT 30

GRMT 31

GRMT 32

GRMT 33

GRMT 34
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C

C

C

C

C

C

C

C

C

C

C

C

C0°o

C

C

C

C

C

C

C

C

If (ifirst.eq.l)Then

Change the following to suit your system characteristics.

iswap = 1

iblwd = 0

irlbw = 0

iur = 5

nhdr = 45

dirsep = '/'

endsep = '/'

termchar = ' '

scrstat = 'scratch'

sysform = 'system'

Call the GRAM initialization routine.

Call init

Store initial position values in commons.

elt = 0.

hl = chgt

phil = clat

thetl = clon

iopt = 0

ho = hl

phio = phil

theto = thetl

h = hl

phi = phil

thet = thetl

Evaluate atmospheric values at initial position.

Call randinit

Call timestep(0.,0.,0.,0.)

Else

Evaluate the atmospheric values at subsequent positions.

delt = crime - elt

dhgt = chgt - hl

dphi =clat - phil

dthet = clon - thetl

If (Abs(dthet).gt.180.)dthet = dthet - Sign(360.,dthet)

Call timestep(delt,dght,dphi,dthet)

You can use any of the desired atmospheric parameter output

values here, e.g. by passing them to a subroutine (see list of

available output variables near label 920 in the atmod

subroutine and Section 4.6 of the report).

If(nm°re'eq'0"°r'(i°pt'eq'0"and'nt'ge'nmax))Then

If (iopr.eq.2)Then

If random option is off, return ifirst = -2 to signal the

driver program to terminate.

ifirst = -2

Return

Endif

GRMT 35

GRMT 36

GRMT 37

GRMT 38

GRMT 39

GRMT 40

GRMT 41

GRMT 42

GRMT 43

GRMT 44

GRMT 45

GRMT 46

GRMT 47

GRMT 48

GRMT 49

GRMT 50

GRMT 51

GRMT 52

GRMT 53

GRMT 54

GRMT 55

GRMT 56

GRMT 57

GRMT 58

GRMT 59

GRMT 60

GRMT 61

GRMT 62

GRMT 63

GRMT 64

GRMT 65

GRMT 66

GRMT 67

GRMT 68

GRMT 69

GRMT 70

GRMT 71

GRMT 72

GRMT 73

GRMT 74

GRMT 75

GRMT 76

GRMT 77

GRMT 78

GRMT 79

GRMT 80

GRMT 81

GRMT 82

GRMT 83

GRMT 84

GRMT 85

GRMT 86

GRMT 87

GRMT 88

GRMT 89

GRMT 90

GRMT 91

GRMT 92

GRMT 93

GRMT 94
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C

C

C

C

90

Read the next random number and re-initialize the position

and atmospheric variables. Return a value of ifirst = -i

to tell the driver program that re-initialization was done.

ifirst = -i

nt = 0

nmore = 1

Read(iur,*,end=90)nrl

hl = ho

phil = phio
thetl = theto

h = ho

phi = phio
thet = theto

elt = 0.0

ctime = 0.0

chgt = ho

clat= phio

clon = theto

Call randinit

Call timestep(0.,0.,0.,0.)

Endif

Endif

Return

Return the value ifirst = -9 if the driver program is to

terminate.

ifirst = -9

Return

End

GRMT 95

GRMT 96

GRMT 97

GRMT 98

GRMT 99

GRMTI00

GRMTI 01

GRMTI02

GRMTI03

GRMTI04

GRMTI05

GRMTI06

GRMTI07

GRMTI08

GRMTI09

GRMTII0

GRMTIII

GRMTII2

GRMT113

GRMT114

GRMTII5

GRMTII6

GRMTII7

GRMTII8

GRMTII9

GRMTI20

GRMT 121

GRMTI22

GRMTI23

GRMTI24

GRMTI25

GRMTI26

• k
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